Self-Preferencing and Welfare in Hybrid Platforms

Bo Hu¹ Hongzhe Huang² Zonglai Kou³ Makoto Watanabe⁴

^{1, 2, 3} Fudan University

⁴Kyoto University

APIOC 2025

Hybrid Platforms and Self-Preferencing

- Hybrid platforms combine 1P and 3P sales, e.g. Amazon, JD
 - ▶ 1P listings: limited in variety.
 - ▶ 3P listings: expand variety, but crowd out 1P sales.
- ▶ Platforms may want to **self-preference (SP)**, i.e., lower the visibility of 3P listings, to protect 1P sales.

Hybrid Platforms and Self-Preferencing

- Hybrid platforms combine 1P and 3P sales, e.g. Amazon, JD
 - ▶ 1P listings: limited in variety.
 - ▶ 3P listings: expand variety, but crowd out 1P sales.
- Platforms may want to self-preference (SP), i.e., lower the visibility of 3P listings, to protect 1P sales.
- ▶ A model of a monopolistic hybrid platform that features: free entry of 3P sellers / double marginalization / control over listing visibility

Hybrid Platforms and Self-Preferencing

- Hybrid platforms combine 1P and 3P sales, e.g. Amazon, JD
 - ▶ 1P listings: limited in variety.
 - 3P listings: expand variety, but crowd out 1P sales.
- Platforms may want to self-preference (SP), i.e., lower the visibility of 3P listings, to protect 1P sales.
- ▶ A model of a monopolistic hybrid platform that features: free entry of 3P sellers / double marginalization / control over listing visibility
- When is it profitable for the hybrid-platform to SP?
- ► Welfare consequences of banning SP?

- ► The intermediary does not always self-preference.
- ➤ SP occurs only under **excessive seller entry**, which arises when entry cost is low and(or) first-party presence is high.

- ► The intermediary does not always self-preference.
- ► SP occurs only under **excessive seller entry**, which arises when entry cost is low and(or) first-party presence is high.
- A ban can harm welfare. The platform then resorts to higher commission fees to deter entry ⇒

- ► The intermediary does not always self-preference.
- ► SP occurs only under **excessive seller entry**, which arises when entry cost is low and(or) first-party presence is high.
- ▶ A ban can harm welfare. The platform then resorts to higher commission fees to deter entry \Rightarrow double-marginalization \uparrow

- ► The intermediary does not always self-preference.
- ➤ SP occurs only under **excessive seller entry**, which arises when entry cost is low and(or) first-party presence is high.
- A ban can harm welfare. The platform then resorts to higher commission fees to deter entry ⇒ double-marginalization ↑ and pushes the number of 3P sellers further away from the socially optimal level

- ► The intermediary does not always self-preference.
- ➤ SP occurs only under **excessive seller entry**, which arises when entry cost is low and(or) first-party presence is high.
- A ban can harm welfare. The platform then resorts to higher commission fees to deter entry ⇒ double-marginalization ↑ and pushes the number of 3P sellers further away from the socially optimal level
- We identify sufficient conditions under which a ban lowers both consumer surplus and welfare.

A Model of Hybrid Platform (no self-preferencing)

- ► A large product space, horizontally differentiated.
- Trade is only possible on a platform.

- A large product space, horizontally differentiated.
- Trade is only possible on a platform.
- A measure b of buyers; each has a positive demand D(p) for some variants, and zero demand for the rest.

- A large product space, horizontally differentiated.
- Trade is only possible on a platform.
- A measure b of buyers; each has a positive demand D(p) for some variants, and zero demand for the rest.
- ▶ A large number of potential 3P sellers; each produces one variant at constant marginal cost *c*.
- \triangleright Sellers pay k to enter; entering seller measure is s.

- A large product space, horizontally differentiated.
- Trade is only possible on a platform.
- A measure b of buyers; each has a positive demand D(p) for some variants, and zero demand for the rest.
- ▶ A large number of potential 3P sellers; each produces one variant at constant marginal cost *c*.
- \triangleright Sellers pay k to enter; entering seller measure is s.
- ▶ The platform owns a measure h > 0 (exogenous) 1P listings.
- Each 1P listing is a unique variant, constant cost c.

- A large product space, horizontally differentiated.
- Trade is only possible on a platform.
- A measure b of buyers; each has a positive demand D(p) for some variants, and zero demand for the rest.
- ▶ A large number of potential 3P sellers; each produces one variant at constant marginal cost *c*.
- Sellers pay k to enter; entering seller measure is s.
- ▶ The platform owns a measure h > 0 (exogenous) 1P listings.
- Each 1P listing is a unique variant, constant cost c.
- ▶ The platform charges percentage fee $\gamma \in (0,1)$ on 3P sales and retail price for 1P listings.

Set-up (continue)

- ► The platform uses an algorithm to recommend products to consumers. Sellers (1P and 3P) then set a price p to maximize profits.
- ▶ Given *b* buyers and h + s listings, M(b, h + s) denotes the number of successful recommendations.
- **Each listing obtains** μ^s buyers:

$$\mu^{s}(b, h+s) \equiv M(b, h+s)/(h+s).$$

- We assume:
 - $ightharpoonup M(\cdot)$ is twice differentiable, increasing in both arguments.
 - $\blacktriangleright \mu^s(b,s)$ is decreasing in s.

Micro-foundation for $M(\cdot)$ (I)

- A space of N potential variants. On the platform, H products are 1P listings, S are 3P listings; H + S < N.
- ▶ Each buyer has a consideration set Ω (size $|\Omega|$)
- The probability that the algorithm can find at least one variant in Ω among the H+S variants:

$$\mu^{b}(H+S) = \zeta \left(1 - (1 - (H+S)/N)^{|\Omega|}\right),$$

where $\zeta \in (0,1]$: the algorithm efficiency.

▶ In the large market limit $(N \to \infty, H/N \to h, S/N \to s)$,

$$\begin{split} \mu^b(h+s) &= \zeta \left(1 - \mathrm{e}^{-(h+s)\omega}\right), \quad M(\cdot) = b \cdot \mu^b \\ \mu^s(b,h+s) &= b \cdot \zeta \left(1 - \mathrm{e}^{-(h+s)\omega}\right) / (h+s). \end{split}$$

Micro-foundation for $M(\cdot)$ (II)

- ▶ There are *b* buyers, h + s listings. For any buyer-listing pair, matching Prob. q is i.i.d. drawn from a distribution with c.d.f. F(q) on [0,1].
- ► After *q*'s are realized, the platform recommends the listing with the highest match probability:

$$q_{max} = \max_{i} \{q_i\}.$$

Ex-ante, the expected matching Prob. for a buyer:

$$\mathbb{E}[q_{\mathsf{max}}] = 1 - \int_0^1 [F(q)]^{h+s} dq.$$

Total successful recommendations:

$$M(b, h+s) = b \cdot \left(1 - \int_0^1 [F(q)]^{h+s} dq\right)$$

Discussions of $M(\cdot)$

- ► Focus on the Visibility channel
 - Motivated by platforms where visibility is a prerequisite for sales and often outweighs price competition.
 - Examples: Amazon's Buy Box, Booking.com's Rankings.
- Assume no Direct Pricing channel
 - We abstract away from using fees (γ) purely to raise 3P prices and divert demand to 1P.

Timing

- 1. The platform announces the commission rate γ .
- 2. Observing γ and $M(\cdot)$, 3P sellers simultaneously decide whether to enter the platform.
- 3. The platform uses algorithm M to recommend products to buyers.
- 4. Sellers (1P and 3P) set prices p; matched buyers purchase D(p).

Solution concept:

Subgame perfection

Equilibrium

Pricing of 1P and 3P vendors

▶ 1P vendor profit-maximization:

$$\pi_M = \max_p \ (p-c)D(p).$$

▶ 3P vendor profit-maximization (taking γ as given):

$$\pi_{\mathcal{S}}(\gamma) = \max_{p} \ [p(1-\gamma)-c]D(p) \ \Rightarrow \text{optimal price: } p_{\mathcal{S}}(\gamma).$$

▶ The platform's fee revenue from each match:

$$\pi_P(\gamma) = \gamma p_s(\gamma) D(p_s(\gamma)).$$

▶ Define $\hat{\gamma}$: the rate that maximizes the per-match fee revenue

$$\hat{\gamma} \equiv \arg\max_{\gamma} \pi_P(\gamma).$$

The Platform's Problem

► The free-entry condition for 3P sellers

$$\mu^{s}(b, h+s) \cdot \pi_{S}(\gamma) = k$$

pins down the measure of entering sellers: $s=s_0(\gamma)$, satisfying $\frac{\partial s_0(\gamma)}{\partial \gamma}<0$.

The platform chooses commission rate γ to maximize profits subject to free-entry condition:

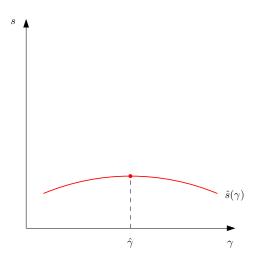
$$\max_{\gamma \in [0,1]} M(b, h+s) \left(\frac{h}{h+s} \pi_M + \frac{s}{h+s} \pi_P(\gamma) \right),$$

s.t. $s = s_0(\gamma).$

► Consider the unconstrained problem first:

$$\max_{\gamma,s} \ \underbrace{M\Big(b,h+s\Big)}_{\text{Market Expansion}} \Big(\underbrace{\frac{h}{h+s}\pi_M + \frac{s}{h+s}\pi_P(\gamma)}_{\text{Business-stealing}} \Big).$$

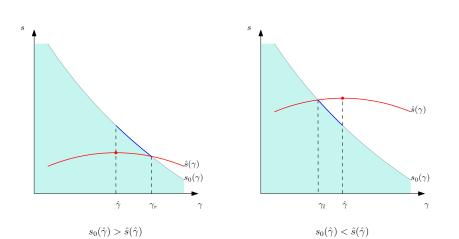
- ▶ Market Expansion: $s \uparrow \rightarrow M(\cdot) \uparrow$.
- ▶ Business Stealing: $s \uparrow \rightarrow$ shift the sales mix toward less profitable 3P sellers (since $\pi_M > \pi_P(\gamma)$ for all $0 \le \gamma \le 1$).
- Suppose the objective is single-peaked in s and let the optimal solution be $\hat{s}(\gamma)$.
- ▶ $\hat{s}(\gamma)$ is single-peaked in γ . When $\hat{s}(\gamma)$ is interior, it is increasing for $\gamma < \hat{\gamma}$ and decreasing for $\gamma > \hat{\gamma}$.



▶ The unconstrained optimum is $(\gamma^*, s^*) = (\hat{\gamma}, \hat{s}(\hat{\gamma}))$.

► Consider the constrained problem:

$$\max_{\gamma} M(b, h+s) \left(\frac{h}{h+s} \pi_M + \frac{s}{h+s} \pi_P(\gamma) \right), \text{ s.t. } s = s_0(\gamma).$$



Self-Preferencing (SP)

Modeling SP

SP: lower the likelihood that a 3P seller enters the recommendation process from 1 to $\alpha < 1$:

$$M(b, h + \alpha s)$$

Choosing α is equivalent to choosing the number of 3P sellers that get into the recommendation process, denoted by s_{sp} :

$$\alpha \equiv \frac{s_{sp}}{s_E}$$
,

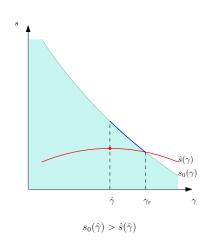
 s_E : the measure of entering 3P sellers.

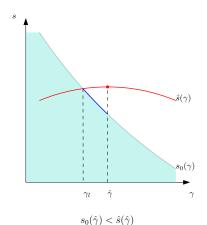
Timing (updated)

- 1. The platform announces the commission rate γ and the number of displayed 3P sellers s_{sp} .
- 2. Observing (γ, s_{sp}) and $M(\cdot)$, third-party sellers simultaneously decide whether to enter the platform.
- 3. The platform uses algorithm $M(b, h + \alpha s)$ to recommend products to buyers.
- 4. Sellers (1P and 3P) set prices p; matched buyers purchase the amount D(p).

The platform's problem (allowing for SP)

$$\max_{\gamma \in [0,1], s \in \mathbb{R}_+} \ M\Big(b, h+s\Big) \Big(\frac{h}{h+s} \pi_M + \frac{s}{h+s} \pi_P(\gamma)\Big), \text{ s.t. } \underline{s} \leq \underline{s_0(\gamma)}.$$





Proposition (Excessive Entry and SP)

The platform's decision to self-preference depends on the level of entry at $\hat{\gamma}$.

- **Excessive Entry (** $s_0(\hat{\gamma}) > \hat{s}(\hat{\gamma})$ **):** It is optimal for the platform to self-preference. The platform achieves unconstrained maximum profit by setting $\gamma_{sp} = \hat{\gamma}$ and $s_{sp} = \hat{s}(\hat{\gamma})$.
- ▶ Insufficient Entry ($s_0(\hat{\gamma}) < \hat{s}(\hat{\gamma})$): It is optimal for the platform to **not** actively self-preference. The outcome is identical to the no self-preferencing benchmark.

Proposition (First-party Capacity triggers SP)

If the platform's own capacity h is sufficiently large (h > \tilde{h}), self-preferencing becomes profit-maximizing.

- ▶ **Higher 1P capacity** $(h \uparrow)$: as 1P capacity increases, both seller entry $s_0(\hat{\gamma}) \downarrow$ and platform optimum $\hat{s}(\hat{\gamma}) \downarrow$.
- But the platform wants sellers to exit faster than they naturally do since 1P has a higher profit margin:

$$\underbrace{\frac{\partial s_0(\hat{\gamma})}{\partial h}}_{\text{Seller Natural Exit}} > \underbrace{\frac{\partial \hat{s}(\hat{\gamma})}{\partial h}}_{\text{Platform Optimal Exit}}$$

Corollary (Low Demand and Entry Cost Trigger SP)

If the market demand (b) is sufficiently low, or if the seller entry cost(k) is sufficiently low, the platform engages in self-preferencing.

- **Low Demand** ($b\downarrow$): As the market shrinks, the platform's desire for variety (\hat{s}) drops faster than the sellers' willingness to enter (s_0).
- ▶ Low Entry Cost $(k \downarrow)$: Low costs trigger a flood of entrants $(s_0 \uparrow)$, but the platform's ideal number of sellers (\hat{s}) is unchanged, creating a massive "excessive entry" gap.

Welfare Analysis

Social Planner

The planner's problem is

$$\max_{\gamma,s} \underbrace{M(\cdot) \left\{ \frac{h}{h+s} \left(\pi_M + cs_M \right) + \frac{s}{h+s} \left(\pi_P(\gamma) + cs_S(\gamma) \right) \right\}}_{\equiv W(\gamma,s)}$$
 subject to $s < s_0(\gamma)$.

- Fee distortion: The platform sets γ too high (exacerbates the double marginalization and lowers the consumer surplus).
- ▶ Quantity distortion: For given γ , platform chooses s_{sp} based on π_M versus π_P only. The platform lists too many 3P sellers iff

$$\frac{cs_S(\gamma)}{cs_M} < \frac{\pi_P(\gamma)}{\pi_M}.$$

Banning SP

- Focus on excessive entry scenario $s_0(\hat{\gamma}) > \hat{s}(\hat{\gamma})$.
- Welfare with SP: $W_{sp} \equiv W(\hat{\gamma}, \hat{s}(\hat{\gamma}))$.
- ▶ Welfare after **banning SP**: $W_b \equiv W(\gamma_{nsp}, s_0(\gamma_{nsp}))$.
- ▶ Welfare change of banning SP is $W_b W_{sp}$:

$$\underbrace{W(\gamma_{\textit{nsp}}, \; s_0(\gamma_{\textit{nsp}})) - W(\hat{\gamma}, \; s_0(\gamma_{\textit{nsp}}))}_{\text{Fee Effect}(<0)} + \underbrace{W(\hat{\gamma}, \; s_0(\gamma_{\textit{nsp}})) - W(\hat{\gamma}, \; \hat{s}(\hat{\gamma}))}_{\text{Quantity Effect (ambiguous sign)}}.$$

Lemma

There exist h_0 and h_1 , satisfying $\tilde{h} < h_0 \le h_1 < \overline{h}$, such that

- ▶ Banning SP leads to more entry $(\hat{s}(\hat{\gamma}) \leq s_0(\gamma_{nsp}))$ if $h \leq h_0$;
- ▶ Banning SP leads to less entry $(\hat{s}(\hat{\gamma}) \geq s_0(\gamma_{nsp}))$ if $h \geq h_1$.

Recall that $0 < \tilde{h} < \bar{h}$ such that

- ▶ $h \leq \tilde{h}$: No SP due to insufficient entry;
- ▶ $h \ge \bar{h}$: Only 1P sales, and deter all third-party entry.

The Quantity Effect $W(\hat{\gamma}, s_0(\gamma_{nsp})) - W(\hat{\gamma}, \hat{s}(\hat{\gamma}))$ is negative if either:

- 1. Platform lists too many sellers, a ban increases entry further $h < h_0$ and $\frac{cs_S(\hat{\gamma})}{cs_M} < \frac{\pi_P(\hat{\gamma})}{\pi_M} \Rightarrow s_0(\gamma_{nsp}) > \hat{s}(\hat{\gamma}) > s_w(\hat{\gamma})$
- 2. Platform lists too few sellers, a ban reduces entry further $h > h_1$ and $\frac{cs_S(\hat{\gamma})}{cs_M} > \frac{\pi_P(\hat{\gamma})}{\pi_M} \Rightarrow s_0(\gamma_{nsp}) < \hat{s}(\hat{\gamma}) < s_w(\hat{\gamma})$

These conditions suffice for a ban to reduce both **welfare and consumer surplus**.

Conclusion

- ▶ SP is a tool to manage excessive seller entry.
- Banning SP substitutes visibility control with price control, thus exacerbating double marginalization.
- ► High commission fees can cause 3P seller entry to deviate further from the social optimum than they would under self-preferencing.