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Abstract

China has introduced a novel two-stage per-day penalty (PDP) policy to curb en-

vironmental violations, piloted in two cities (in 2007 and 2010) before being adopted

as national law in 2015. Leveraging this unique pilot, we find that violating firms re-

duce pollutant emissions in response to escalated PDPs and that their responses vary:

Small firms cut production, large firms increase abatement efforts, and multiplant

firms shift production to facilities outside the pilot regions. We develop and calibrate

a dynamic model with heterogeneous productivity and compliance costs, illustrating

that had China adopted the one-stage PDP design as in the United States, compliance

rates would have been much higher, albeit with slightly greater output losses.
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[Laws] should be so specific to the people for whom they are made, that it is a great coincidence if those

of one nation can suit another.

—Montesquieu, The Spirit of the Law, 1961

When an orange tree is planted south of the Huai River, it bears oranges, but when planted north of the

Huai River, it bears bitter wild oranges (zhı̌).

—Yanzi Chunqiu, Spring and Autumn Period, China

1 Introduction

Institutional transplants across countries are common in the field of environmental protection

due to the shared nature of environmental challenges.1 In practice, however, some institutions

succeed, while others fail. To truly understand the reasons for this, we must closely follow their

”journey” across different jurisdictions to identify which elements remain core and stable and

which are adaptable. Even minor modifications to an institution can drastically alter the incen-

tives faced by regulated entities, leading to diverse economic outcomes. China’s adoption of the

environmental per-day penalty (PDP) policy from the U.S. and other developed economies pro-

vides a valuable opportunity to examine how transplanted environmental institutions diverge

from their origins and, through a comparative lens, to assess their effectiveness in influencing

firms’ compliance and environmental and economic performance.

The original U.S. PDP model establishes a strict framework for violations. The Clean Air Act

allows the environmental agency to impose a civil penalty of up to $37,500 per day for each vio-

lation. Violating firms can be penalized with a substantial fine according to the duration of their

wrongful conduct, as each day of illegal emissions shall be treated as one separate wrongdoing.2

China started piloting the PDP in two cities, Chongqing (in 2007) and Shenzhen (in 2010),

before extending the policy nationwide in 2015. Unlike the original U.S. model, China’s penalty

adopts a two-stage design. When a violation is detected in a routine inspection (the first stage), a

regular one-time penalty is imposed. The government agency then conducts a follow-up second-

stage inspection to verify whether the firm has rectified its misconduct. If the violation persists,

an escalated penalty is imposed, calculated based on the number of days between the initial and

follow-up inspections. In this paper, we refer to China’s approach as the two-stage PDP, and the

original U.S.’s approach as the one-stage PDP.3

1For instance, after the United States introduced the Environmental Impact Assessment through the National Envi-
ronmental Policy Act in 1969, over 100 countries and regions institutionalized it, making it a standard practice.

2See 42 USCS § 6928(g) and 30 USCS § 1268(h). Many other developed countries have similar PDP policies.
3While the two-stage PDP specifically targets previous violators, this does not mean that routine inspections cannot

prioritize plants with a higher likelihood of violations. Inspectors often assign plant-specific inspection probabilities
based on past performance and other observed risk factors. In practice, this targeted inspection strategy can be integrated
with the PDP.
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To understand how the two-stage PDP operates and differs from the one-stage PDP and the

standard one-shot penalty inspections, we first develop a simple dynamic model of heterogeneous

firms to guide our analysis. The model captures the two-stage structure of China’s PDP design

and characterizes firms’ production and compliance decisions. We show that under the standard

one-shot penalty, firms found in violation tend to persist in their noncompliance, even after be-

ing fined. In contrast, the two-stage PDP creates stronger incentives for compliance. Under this

penalty system and before being inspected, firms behave no differently than they would under a

one-shot penalty. However, once the violation is detected, they face an escalated PDP for contin-

ued noncompliance, significantly increasing the cost of violations. The model predicts that firms

respond differently when faced with the PDP: Large firms adopt abatement technologies and re-

duce emission intensity. Small firms reduce output to avoid penalties but continue to maintain

high pollution intensity. Multiplant firms shift production away from penalized plants to other

facilities, avoiding penalties while sustaining high pollution intensity.

To test the predictions above, we use a standard Difference-in-Difference (DID) design to

identify the causal effects of the PDP pilot on compliance, pollution and production of firms, by

comparing the changes in various outcomes before and after the pilot year across firms located

inside and outside the pilot regions. We use firm-level data from the Annual Environmental

Survey of Polluting Firms in China, the Annual Survey of Industrial Firms, the penalty data

from the Institute of Public and Environmental Affairs, and the business registration data from

the State Administration for Industry and Commerce. Our baseline regressions show that after

the two-stage PDP is introduced, non-penalized firms continue to behave as they would under

one-shot fines, while penalized firms significantly reduce their emissions and pollution intensity.

These results are robust to parallel trend tests and other validation checks.

To uncover the underlying heterogeneity, we further divide firms into large, small, and those

with affiliates. We find that when faced with the PDPs, large firms not only reduce emissions

but also lower pollution intensity by adopting abatement technologies. In contrast, small firms

reduce emissions only by cutting output rather than adopting clean technologies. Lastly, firms

with affiliates shift production away from the pilot regions to the plants outside the regions to

minimize compliance costs. This is reflected in a significant decline in sales and emissions for

firms within the pilot regions while their pollution intensity remains largely unchanged. Mean-

while, their affiliates outside the pilot regions show significant increases in sales and emissions,

with minimal change in emission intensity.

Thus far, the analysis clearly illustrates that the two-stage PDP impacts only the penalized

firms, with varied responses depending on firm size and production network. Meanwhile, as for

firms out of the pilot region, though noncompliant, remain unaffected. This raises an important

question for policy evaluation: What is the overall impact of the two-stage PDP on compliance,

and what about the original one-stage PDP design? To explore this, we extend the benchmark
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model to account for heterogeneous compliance costs across firms and conduct a quantitative

comparative analysis. Regarding total emission reduction, we find that the one-stage PDP is

three to five times more effective than the two-stage PDP. This increased effectiveness comes

with a modest output loss, ranging from -0.07% to -0.1% under the one-stage PDP compared to

a smaller output loss of -0.03% to -0.04% under the two-stage PDP (the range of output losses

depends on the policy parameters). From a welfare perspective, unless maintaining output is

paramount, the one-stage PDP tends to offer better overall performance. A measure for balancing

output and emissions is pollution intensity—that is, the emissions per unit of output. By this

metric, the one-stage PDP reduces pollution intensity by 5% to 7%, whereas the two-stage PDP

achieves a reduction of less than 1.8%. These findings suggest that the relative effectiveness of

each PDP regime depends on the criteria used for evaluation. More broadly, when transplanting

institutions from developed countries, it is essential to carefully consider how local modifications

alter the incentives these policies create. Such scrutiny ensures that adapted policies remain

aligned with local realities and broader development goals.

This paper is organized as follows: The remainder of this section reviews the literature. Sec-

tion 2 introduces the two-stage PDP pilot in China. Section 3 presents a theoretical model that

generates testable predictions. Section 4 describes the data and empirical specifications, and Sec-

tion 5 presents the empirical findings. Section 6 provides the quantitative analysis, comparing

the effects of the two-stage PDP to the one-stage PDP. Finally, Section 7 concludes.

Literature review. This paper contributes to the literature on environmental regulation in de-

veloping countries. Compared with that in developed countries, the regulatory capacity in devel-

oping countries is often much more constrained (Estache and Wren-Lewis, 2009; He, Wang and

Zhang, 2020), making effective monitoring and enforcement critical (Shimshack, 2014; Karplus,

Zhang and Almond, 2018; Agarwal, Han, Qin and Zhu, 2023, Rodrigue, Sheng and Tan, 2024).4

Duflo, Greenstone, Pande and Ryan (2018) examine the impact of random and intensive inspec-

tions on plant emissions in India and find that regulator discretion allows for using local infor-

mation to target the most severe violators. From the perspective of authority shift, Kong and Liu

(2024) document an effect of centralizing authority in the appointment of civil servants on the

rise of frequency and amount of environmental penalty a firm might face and an improved en-

vironmental quality. Complementing their study, we demonstrate the effectiveness of focusing

follow-up inspections on firms with past violations. This finding not only aligns with the con-

cept of dynamic enforcement, where regulators adjust inspection frequency and sanction inten-

sity based on firms’ past behavior (see, e.g., Harford and Harrington 1991; Helland 1998; Friesen

2003), but also provides new evidence on how different inspection strategies change firms’ inten-

tion of environmental compliance. After all, rather than simply punishing firms, pushing them to

4Even in industrialized economies, regulatory capacity remains a significant challenge (Helland, 1998; Shimshack and
Ward, 2005).
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correct the misbehavior and deterring them from further violations should be the ultimate goal

of legal enforcement.5 6

Our paper also contributes to the literature on pollution leakage effects and negative geo-

graphical spillovers. Environmental regulations can lead to unintended increases in emissions

elsewhere due to firms’ strategic responses, such as production reallocation, plant closures, and

new plant establishments (Henderson 1996; List et al. 2003; Dean et al. 2009; Hanna 2010; Cui and

Moschini, 2020). Here, we provide new evidence of policy-induced pollution leakage within the

ownership networks of regulated firms in the context of localized environmental stringency. An

emerging area of literature is exploring the spatial substitution of pollution within an economy.

For instance, Gibson (2019) examines how multi-facility firms in the U.S. reallocate pollution

across different media and locations in response to PM regulations under the Clean Air Act. Rijal

and Khanna (2020) identify significant leakage within multiplant firms linked to high-priority

policy violations. Similarly, Cui et al. (2023) assess carbon leakage within firms’ ownership net-

works using data from China’s regional emission trading system pilots. Our paper adds to this

literature by drawing a panorama depicting varied responses of firms with different size and pro-

duction networks under stricter environmental regulation: single-plant firms adopt abatement

equipment and increase production, while multiplant firms reduce output in regulated plants

and shift pollution to less-regulated plants rather than investing in additional abatement mea-

sures.

In a broader sense, our paper echoes the insights from the literature on institutional trans-

plants across countries. Berkowitz et al. (2003) emphasize the importance of tailoring trans-

planted institutions to local environments, arguing that success depends on alignment with local

conditions. Djankov et al. (2003) extend this view, showing how institutional fit can affect pol-

icy outcomes. The current paper provides a focused analysis of an environmental regulation

transplant by comparing the PDP regimes in China and the U.S. along several key dimensions.

Importantly, we offer a quantitative comparison, demonstrating how China’s modification of the

policy may (or may not) better align with its welfare goals.

2 Background and China’s per-day penalty policy

Environmental regulation in China at large. In China, pollutant emission standards and the

framework for environmental regulation, including fines, are primarily established by national

law. While local governments can adjust some aspects of the regulations, such as fine amounts,

5Our paper is also related to the discussion on the impact of inspections and monitoring in environmental regulations;
see, e.g., Eckert (2004); Keohane, Mansur and Voynov (2009); Hanna and Oliva (2010); Agarwal, Han, Qin and Zhu (2023);
Yang, Lin and Peng (Forthcoming). It is also related to that on emissions standards; see, e.g., Li and Lu (2020), and Najjar
and Cherniwchan (2021), among others.

6In contrast to studies on PDPs in other fields, such as environmental science and management (see, e.g., Bu and Shi
2021), we incorporate a key feature of China’s PDP design—the two-stage approach—which significantly changes the
incentives for firms.
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these must still comply with the national guidelines and cannot contradict national law. As of

2023, China has enacted over 30 national environmental laws and more than 100 administrative

regulations related to environmental protection. Enforcement of these regulations, however, is

generally managed by environmental bureaus at the city and county levels. The Ministry of

Ecology and Environment delegates enforcement tasks to local bureaus, which are responsible

for monitoring pollution, conducting inspections, and imposing fines on noncompliant firms.

This separation between national-level lawmaking and local-level enforcement encourages local

authorities to pursue institutional innovations to address the practical challenges they face.

There are two recurring challenges in local regulatory enforcement. First, there is a significant

shortage of enforcement staff, which limits the capacity for effective oversight. As a result, the

routine inspection rates in China remain very low. While exact numbers are unavailable, a report

by the IPE showed that in 2016, local agencies lacked standardized inspection processes and only

inspected 35.5% of the violation cases that were “self-reported” by publicly listed manufacturing

firms.7 Given the capacity constraint, local enforcement agencies strive to detect violations more

effectively and at the lowest possible cost.

Second, the maximum penalty per violation is often at a very low level relative to the compli-

ance cost. As a result, many firms find it more economical to pay the penalties rather than run

their pollution control equipment properly or install clean production technologies. Indeed, the

tension between the limited penalties that enforcement agencies can impose and the recurring

polluting behaviors of firms over decades eventually prompted a major revision of the National

Environmental Protection Law in 2015, which is also the only revision since its adoption in 1979.

A key institutional innovation in this revision was the implementation of the two-stage PDP pol-

icy, allowing for heavier fines for violations in follow-up inspections. This means fines are now

based on the number of days of violations, creating a stronger incentive for compliance.

Pilots of China’s PDP policy. The two-stage PDP policy is not an innovation by the national

law, rather, the policy was first piloted in two cities: Chongqing (beginning in 2007) and Shen-

zhen (beginning in 2010). Chongqing is a major industrial hub in southwest China, and Shenzhen

is a leading economic and technology center in southern China. The piloted PDP approach was

inspired by similar regulatory frameworks in advanced economies, particularly that of the U.S.

For instance, the U.S. Clean Air Act empowers agencies to impose administrative fines of up

to $37, 500 per day for each violation of the act and its associated regulations. This structure en-

7The IPE report can be found at https://wwwen.ipe.org.cn/GreenSecurities/GreenRiskDetail.aspx?id=55, ac-
cessed on December 11, 2023. There is ample anecdotal evidence highlighting the lack of resources in environmental
enforcement in China. Take Shanghai, the country’s most developed region, as an example. In the Fengxian district,
the environmental supervision team consists of only 25 staff members, yet they are responsible for handling over 3,000
environmental complaints annually and monitoring more than 10,000 enterprises. Similarly, in the Baoshan district, just
34 staff members manage over 2,500 environmental complaints each year and conduct inspections for more than 6,000
enterprises. Staff shortages in other regions of China are likely even more severe. In 2017, Chen Jining, then the Minis-
ter of Environmental Protection, mentioned in an interview that enforcement teams in many areas of China even faced
shortages of essential resources, such as vehicles and uniforms.
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sures that the longer a firm engages in wrongful conduct, the larger the cumulative fines, creating

a strong incentive for timely compliance.

When Chongqing and Shenzhen introduced the PDP rule, they modified the original model.

Their revised approach involved two stages.

• In the first stage, a routine inspection is conducted. If a violation of emission standards

is identified, the plant is fined for a one-time infraction (the penalty is one-shot without

considering the duration of the violation). Following this, the plant is informed that a

follow-up targeted inspection will occur within 30 days, without prior notice.

• In the second stage, if excessive emissions are found again during this follow-up inspection,

the plant will be fined for the PDP. This fine is calculated by multiplying the initial one-time

fine by the number of days between the two inspections. This second-stage procedure is

repeated until the plant complies with the emission standards.

In simple words, in the revised model, the PDP is applied only in the second stage. In the first

stage, the plant is subjected to a one-shot penalty rather than a daily fine.8

The two-stage PDP policy offers local environmental agencies at least two advantages to ad-

dress the challenges previously mentioned. First, it enables reinspections to target firms with past

violations. Since repeat offenders are more likely to violate again, this targeted approach opti-

mizes the use of limited enforcement resources. More importantly, the revised model imposes

much harsher penalties for continuing violations, thereby preserving the strong compliance in-

centives inherent in the original one-stage PDP structure.

A simple before-and-after comparison shows that the rectification rate for violations signif-

icantly improved in both Chongqing and Shenzhen after the implementation of the two-stage

PDP pilot. In Chongqing, only 4.8% of violations were rectified after an initial fine before the

pilot. This rate increased to 69% in 2010 and further rose to 95.5% by the end of 2014. Similarly,

in Shenzhen, the rectification rate following an initial fine increased by 30% from 2009 to 2010.

Despite the anecdotal evidence, a rigorous empirical evaluation is still missing. It remains

unclear whether the improved rectification rates are a causal result of the two-stage PDP pilot.

If they are, it is important to understand the mechanisms behind these improvements—whether

firms adopted cleaner production technologies or simply reduced production, the latter of which

could have greater welfare costs. More importantly, the two-stage PDP policy significantly

changes the incentives faced by firms compared to the original one-stage PDP. As part of a com-

prehensive policy evaluation, it is essential to determine whether this modification is more effec-

8There are also some subtle differences between the PDP rules in Shenzhen and Chongqing. In Shenzhen, the maxi-
mum period between inspections is limited to 30 days, while Chongqing does not explicitly specify such a time restriction.
Additionally, the daily fines in Shenzhen are capped at RMB 10,000 per day, whereas in Chongqing, they can range from
RMB 10,000 to 100,000 per day.

8See the report from Legal Daily at https://news.sina.com.cn/o/2015-01-13/182831394802.shtml, accessed on
December 12, 2023.
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tive in curbing polluting behavior than the original U.S. approach.

3 Model

In this section, we develop a simple dynamic model with firms of heterogeneous productivity

to compare the effects of different environmental penalties. To maintain consistency with our

empirical tests, here, we primarily look into the regular one-shot penalty and the Chinese two-

stage PDP, leaving the extension and comparison with the U.S. one-stage PDP to the quantitative

analysis in Section 6.

In addition to the differences in productivity, we also consider two types of firms: those oper-

ating only one plant and those operating multiple factories. For demonstration purposes, in the

latter category, we focus on firms with two factories, with one plant located in a region under the

two-stage PDP and the other representing facilities located outside the pilot region.

Time is discrete and continues forever. Each firm produces a different good and faces a de-

mand represented by a function of constant elasticity:

q(p) = p−σ,

with σ > 1. Each firm is endowed with a productivity ψ ∈ (0, ∞) and is subject to an exogenous

destruction shock, which happens each period with probability δ ∈ (0, 1). Here, δ can also be

understood as the discount factor. Production requires labor only, and it is also accompanied by

pollution. Following Shapiro and Walker (2018), we take pollution as a by-product and assume

that output q is produced according to

q = eαe(ψl)αl , (1)

where αe, αl > 0 and e and l represent emission and labor, respectively. Thus, production can

be equivalently interpreted as using emission and labor as inputs.9 We allow α ≡ αe + αl < 1,

i.e., decreasing returns to scale. For dual-plant firms, Eq. (1) represents the production function

at the plant level. Here, α < 1 implies that producing in both factories is more profitable than

producing in only one.

Throughout the analysis, we assume that the labor market is completely competitive, with

the wage rate normalized to one. In addition, firms need to pay pollution fee τ > 0 per unit

of emissions. In the following, we first consider the response of single-plant firms to different

penalty policies and then move on to the analysis of dual-plant firms. The proofs are provided

in the appendix.

9See Shapiro and Walker (2018) for a micro-foundation of this function. Given that firm exit cannot be accurately
tracked in the data, we omit modeling firm exit as a reaction to high penalties by removing fixed production costs from
our model.
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3.1 Single-plant firms: Production, abatement, and penalty

Firms can be penalized if they violate emission standards. To become compliant, firms could

resort to an abatement technology at a one-time fixed cost of f > 0 as well as a recurring linear

flow cost of aξbe each period with a > 0 and b > max{1, τ
a }. We shall refer to f as the abatement

or compliance cost. The abatement technology reduces emissions by a certain fraction, denoted

by ξ. We assume that firms adopting the abatement technology will comply with emission stan-

dards and, therefore, are not subject to penalties (see below).10

Production with the abatement technology. Suppose a firm has adopted the abatement tech-

nology. Then, in each period, it chooses emission reduction ξ together with the labor and emis-

sion to maximize flow profits:

max
e,l≥0,ξ∈[0,1]

{
pq − l − τ(1 − ξ)e − aξbe

}
.

The first order condition of ξ yields optimal reduction ξ∗ =
(

τ
ab
) 1

b−1 ∈ (0, 1). Substituting ξ∗ into

the objective function, the firm’s problem becomes

max
e,l≥0

{
(eαe(ψl)αl )

σ−1
σ − l − τηe

}
,

where η ≡ 1 − ξ∗(1 − 1
b ) ∈ (1 − ξ∗, 1) is the effective reduction on emission fees. The first-order

conditions with respect to l and e are

l =
σ − 1

σ
αl pq,

e =
σ − 1

σ

αe pq
ητ

.

Taking the ratio yields

e
l
=

αe

αl

1
ητ

. (2)

Inserting (2) into (1) and using c(q) = ητe + l gives the cost function of single-plant firms, which

depends on productivity ψ and output q:

c(q) = Υψ− αl
α (ητ)

αe
α q

1
α ,

where Υ ≡ αα
− αl

α
l α

− αe
α

e is a constant. Using c(q) to derive the optimal output and inserting it back

into the objective yields the maximized flow profits under clean technologies:

πc(ψ) = Λ (η)−βτ ψβψ ,

10In practice, regulatory compliance requires plants to invest in acquiring and maintaining pollution control equip-
ment. While some violations may occur sporadically, most are due to consistent neglect of existing control technologies
or a failure to install the necessary equipment to meet regulatory standards (Helland 1998). In the calibration exercise of
Section 6, we demonstrate that when firms adopt abatement technologies, their pollutant emissions decrease by 84.51%.
See footnote 30.
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where Λ ≡ σ(1−α)+α
σ ( σ−1

σ )
(σ−1)α

α+(1−α)σ ( 1
αl
)−βψ( τ

αe
)−βτ , βτ ≡ αe(σ−1)

σ(1−α)+α
, βψ ≡ αl(σ−1)

α+(1−α)σ
.

Production without abatement technology. Firms are inspected by environmental authorities

with probability λ. Following Fan et al. (2021) and Qi et al. (2021), we assume that if a firm

does not adopt the aforementioned abatement technologies, then a proportion κ of its flow rev-

enue will be confiscated for violating the emission standards once the firm is inspected (in an

inspection, violations are detected with probability one). Each period, the firm chooses e and l to

maximize flow profits:

max
e,l≥0

(1 − λκ) (eαe(ψl)αl )
σ−1

σ − l − τe.

A firm utilizing polluting technologies, as opposed to one using clean technologies, incurs a

higher effective penalty rate and, consequently, lower expected net revenue. Following the same

procedure as above, one can derive the maximized flow profits under dirty technologies:

πd(ψ, λκ) = Λ (1 − λκ)βκ ψβψ .

where βκ ≡ σ
σ(1−α)+α

.

One-shot penalties and two-stage PDP. We consider two types of enforcement strategies. A

standard one-shot penalty involves firms being subject to random inspections and fined for vi-

olations of emission standards. Continue to let λ ∈ (0, 1) be the inspection probability. Let

κ0 ∈ (0, 1) represent the proportional fine imposed upon detection of noncompliance. We refer

to the pair (λ, κ0) as the type 0 inspection, which operates independently in each period, irrespec-

tive of whether the firm was previously inspected and penalized.11

Under the two-stage PDP, all firms initially face a type 0 inspection. If a firm is found to be

in violation, it is fined a proportion κ0 and is subjected to another follow-up inspection within a

month. If the firm still fails to rectify its misconduct during the follow-up inspection, it will be

subject to a higher penalty κ1, where κ1 > κ0. We refer to this second inspection and penalty as a

type 1 inspection. The penalty κ1 is calculated by multiplying κ0 by the number of days between

the two inspections, which is why the penalty is called a per-day penalty. Let d be the expected

number of days between inspections. Assuming that firms are risk neutral, it is without loss

of generality to model PDP as κ1 = d × κ0. The dynamic feature of the two-stage PDP is that

if a firm is fined in the follow-up inspection, it will continue to face type 1 inspections until its

noncompliance ceases. Our model captures this essential feature.

11In the model, we assume that routine inspections are completely random, with all firms having the same likelihood
of being inspected. However, in practice, local environmental agencies are likely to prioritize firms they know are more
prone to excessive emissions, making inspection rates nonrandom. This can be modeled by allowing the inspection rate,
λ, to vary as a function of firm productivity, ψ. Our conclusion remains unchanged: Under the one-shot penalty (even
when inspection rates differ by firm), penalized firms will still continue their polluting behavior. Related discussions can
be found in earlier studies, such as those of Landsberger and Meilijson (1982), Peltzman (1976), and Stigler (1971).
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Firms’ adoption decisions under the one-shot penalty. If a firm adopts pollution abatement

technology, it incurs an upfront fixed compliance cost, f , and earns a flow profit of πc(ψ). The

present discounted value of these profits is πc(ψ)
δ − f . Conversely, if the firm chooses not to

comply and remains a polluter, its discounted profit value becomes πd(ψ,λκ0)
δ . At the margin

between compliance and noncompliance, the firm has a productivity level, ψa, that satisfies the

indifference condition:

πa(ψa)

δ
− f =

πn(ψa, λκ0)

δ
, (3)

which gives the threshold ψa =

(
δ f

Λ(η−βτ−(1−λκ0)
βκ )

) 1
βψ

> 0. Firms with ψ ≥ ψa choose to comply

by adopting the abatement technology, while those with ψ < ψa remain in violation. We assume

that if a firm is indifferent, it will opt for compliance. It is important to note that the compliance

decision is not influenced by whether a firm has previously been fined for a violation. Specifically,

if a firm has not adopted pollution control technology (i.e., its productivity satisfies ψ < ψa), it

will continue to operate in noncompliance even after an inspection has resulted in a fine.

Proposition 1 Under the one-shot penalty, even after incurring a fine, a firm chooses to continue non-

compliance in subsequent periods.

Firms’ adoption decisions under two-stage PDP. Under the two-stage PDP, a firm is subjected

to either a type 0 or a type 1 inspection. Let V0(ψ) be the discounted value of profits when a firm

with productivity ψ is under the type 0 inspection. Let V1(ψ) be the corresponding value under

the type 1 inspection. Let a0(ψ), a1(ψ) ∈ {0, 1} be the firm’s compliance decision under type 0

and type 1 inspections, where a(ψ) = 1 indicates the firm complies with the standard and opts to

install the abatement technology and a(ψ) = 1 indicates the firm opts for violation.

Under the type 0 inspection, the cost is f . However, if a firm would like to install the same

equipment when facing a type 1 inspection, the cost becomes higher: f + f1 with f1 ∈
(

0, δ f
(1−δ)λ

)
.

The extra cost f1 represents the higher expenses incurred during type 1 inspections, where firms

must quickly rectify violations by purchasing, installing, and operating abatement equipment

within a short time frame (Helland 1998).12

A firm that has not previously been fined faces a type 0 inspection and has a value of V0(ψ)

given by

V0(ψ) = max
a0(ψ)∈{0,1}

{
a0(ψ)

(
πc(ψ)

δ
− f

)
+
(

1 − a0(ψ)
)(

πd(ψ, λκ0) + (1 − δ)[λ0V1(ψ) + (1 − λ0)V0(ψ)]
)}

.

The right-hand side is interpreted as follows: If a firm of ψ adopts the abatement technology

12Proposition 1 still holds with the extra cost f1. Our conclusion for single-plant firms holds if f1 = 0.
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(a0(ψ) = 1), it pays the one-time fixed cost f and obtains a flow profit of πc(ψ) in the current and

all future periods, taking into account the exogenous exit shock that happens with probability δ.

If the firm does not adopt the abatement technology (a0(ψ) = 0), it obtains flow profit πd(ψ, λκ0).

In the next period, if the firm does not exit, it faces a type 1 inspection with probability λ, which

yields a continuation value of V1(ψ); otherwise, the continuation value remains V0(ψ).

The marginal firm that is between adopting or not adopting the abatement technology has a

productivity ψa0 that satisfies

πc(ψa0)

δ
− f = πd(ψa0, λκ0) + (1 − δ)

(
λ0V1(ψa0) + (1 − λ0)V0(ψa0)

)
. (4)

When facing type 1 inspections, a firm’s value V1(ψ) is given by

V1(ψ) = max
a1(ψ)∈{0,1}

{
a1(ψ)

(
πc(ψ)

δ
− ( f + f1)

)
+
(
1 − a1(ψ)

)(
πd(ψ, κ1) + (1 − δ)V1(ψ)

)}
.

Compared to V0(ψ), the difference is that on the right-hand side, if the firm adopts the abatement

technology, it faces higher cost f + f1, and if the firm does not adopt, it receives lower flow profit

πd(ψ, κ1) < πd(ψ, λκ0) in the current period and will be under a type 1 inspection again in the

next period. The marginal firm has productivity ψa1, which satisfies

πc(ψa1)

δ
− ( f + f1) = πd(ψa1, κ1) + (1 − δ)V1(ψa1). (5)

We derive an equilibrium condition where if a0(ψ) = 1, then a1(ψ) = 1. That is, if a single-

plant firm adopts the abatement technology under the type 0 inspection, it also adopts it under

the type 1 inspection. This result is intuitive because under the type 1 inspection, the penalties are

more severe, assuming the additional cost f1 is not prohibitively large.

Given that a0(ψ) = a1(ψ) = 1, we have the following value functions:

V0(ψ) =
πa(ψ)

δ
− f , V1(ψ) =

πa(ψ)

δ
− ( f + f1).

Inserting these expressions into Eq. (4), we derive the threshold for adopting the abatement

technology under type 0 inspection:

ψa0 =

(
δ f − λ f1(1 − δ)

Λ(η−βτ − (1 − λκ0)
βκ )

) 1
βψ

.

Comparing this threshold (ψa0) to the compliance threshold (ψa) under the one-shot penalty,

we observe that the range [ψa0, ψa) exists only when f1 > 0. Under the two-stage PDP, firms

within this range choose to install abatement technologies regardless of whether they have been

penalized. Firms outside this range behave in the same manner as they would under the one-shot

penalty regime.

Proposition 2 Under the two-stage PDP, firms subject to type 0 inspection exhibit identical compliance
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behavior to those under the one-shot penalty, except for firms with ψ ∈ [ψa0, ψa).

Firms with ψ ∈ [ψa0, ψa) opt for violation under one-shot fines but switch to compliance

under the two-stage PDP. However, considering the following empirical analysis, this range is

likely to be small (and shrinks as f1 decreases). Therefore, the two-stage PDP is expected to have

a minimal impact on firms’ ex ante compliance decisions—those made prior to the detection of

violations.

We now turn to firms’ compliance decisions after being penalized. To derive ψa1, inserting

V1(ψ) =
πa(ψ)

δ − ( f + f1) into Eq. (5) gives ψa1 =

(
δ( f+ f1)

Λ(η−βτ−(1−κ1)
βκ )

) 1
βψ

. To guarantee ψa1 < ψa0,

we require that f1 not be too large.13 Therefore, firms with ψ ∈ [ψa1, ψa0) that have been cited for

violations transition to compliance in the next period by adopting abatement technology. Firms

with lower productivity levels, ψ ∈ (0, ψa1), reduce both their output and emissions in response

to the increased penalties they face.

Proposition 3 Under the two-stage PDP, a penalized firm will reduce its emissions in the next period,

either by lowering output or by adopting abatement technologies. Specifically, firms with ψ ∈ [ψa1, ψa0)

adopt abatement technologies to reduce emissions, while firms with ψ ∈ (0, ψa1) reduce output.

3.2 Dual-plant firms: Abatement and production relocation

To simplify the scenario where firms can relocate production across multiple factories to manage

varying environmental penalties, we consider a firm with two plants, denoted as A and B. Both

plants produce the same goods, which the firm sells at a uniform price given by p = Q− 1
σ , where

Q represents the firm’s total output. Although the two plants have identical productivity, they

may employ different emission technologies, leading to the distinct effective emission fees τA

and τB. Additionally, since the plants are located in different regions, they may be subject to

different regulatory regimes, resulting in varying expected penalties, λAκA and λBκB. As a first

step for the analysis that follows, we first examine the optimal production decisions for a firm

operating two plants.

The optimal production of a dual-plant firm. Each plant of the firm has a cost function that

can be derived similarly to that in the single-plant case:

c(qi, τi) = Υψ− αl
α τ

αe
α

i q
1
α
i , i ∈ {A, B}.

Then, the firm’s problem is to choose a production plan for each plant:

max
qA ,qB≥0

(
qA + qB

)− 1
σ
(
(1 − λAκA) qA + (1 − λBκB) qB

)
− c(qA, τA)− c(qB, τB).

13In particular, f1 < f̄1 with f̄1 ≡ δ f ((1−λκ0)
βκ −(1−κ1)

βκ )
(η−βτ −(1−λκ0)

βκ )δ+λ(1−δ)(η−βτ −(1−κ1)
βκ )

. Note that f̄1 < δ f
(1−δ)λ

.
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Upon deriving the first-order conditions for qA and qB, taking the ratio, and defining the output

ratio of plant A over plant B by γ ≡ qA
qB

, we have

(σ + σγ − γ) 1−λAκA
1−λBκB

− 1

(σ + σγ − 1)− 1−λAκA
1−λBκB

γ
=

(
τA
τB

) αe
α

γ
1−α

α . (6)

A dual-plant firm optimally relocates production between plants based on differences in emis-

sion fees and penalties. For example, less production will be allocated to plant A when it faces

higher expected penalty λAκA or higher proportion emission fee τA. Moreover, the extent to

which relocation is optimal is determined by α. As α → 1, relocation would be extreme—as long

as λκ and(or) τ are different between the two plants, meaning one produces everything and the

other shuts down. We obtain the following observation:

Lemma 1 In the neighborhood of 1−λAκA
1−λBκB

= τA
τB

= 1, the output ratio γ is strictly increasing in 1−λAκA
1−λBκB

and strictly decreasing in τA
τB

.

Abatement and production reallocation between plants. Now, let’s be more specific and sup-

pose that plant A is located in a region subject to the two-stage PDP, whereas plant B is located in

another region subject to the one-shot penalty. Throughout the analysis, we assume that plant B

always produces using dirty technologies.14 We focus on the firm’s decision to adopt the abate-

ment technology in plant A or not.

Let Π(ψ, λAκA, λBκB, τA, τB) be the maximized profit of a dual-plant firm.15 There are three

scenarios where the firm obtains different flow profits. In one scenario, both plants are subject to

a type 0 inspection, and the flow profits of the firm are given by

Πd(ψ, λκ0) ≡ Π(ψ, λκ0, λκ0, τ, τ).

In this case, the plants are symmetric, and qA = qB. In another scenario, plant A is subject to a

type 1 inspection, while plant B is (always) subject to a type 0 inspection. Then, the flow profits

are given by

Πd(ψ, κ1) ≡ Π(ψ, κ1, λκ0, τ, τ).

In this case, the firm will reallocate more production to plant B. Finally, suppose plant A has

adopted the abatement technology. Then, the firm’s flow profits are given by

Πc(ψ) ≡ Π(ψ, 0, λκ0, ητ, τ).

14To guarantee this result, we only need to assume that plant B’s cost of abatement technology adoption is relatively
higher.

15Solving qA and qB based on first-order conditions from the dual-plant firm’s profit maximization and inserting them
into the objective yields the maximized profits of a dual-plant firm, denoted by Π(·): Π(ψ, λAκA, λBκB, τA, τB) = Λ1(1 +

γ)
−1

α+(1−α)σ

[
γ(1 − λAκA) + (1 − λBκB)

]βκ
[
(γ

1
α τ

αe
α

A + τ
αe
α

B )
α

αe

]−βτ
ψβψ , where Λ1 = σ(1−α)+α

α(σ−1) ( σ−1
σ )

(σ−1)α
α+(1−α)σ ( 1

αl
)−βψ ( 1

αe
)−βτ .
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In this case, more production will be allocated to plant A since it faces no penalty.

Let ψ̃a0 denote the threshold productivity level above which a dual-plant firm opts to adopt

the abatement technology at plant A when facing a type 0 inspection. Consider the adoption

decision under the type 1 inspection and suppose

δ( f + f1) > Πc(ψ̃a0)− Πd(ψ̃a0, κ1),

where the left-hand side is the cost of upgrading technologies and the right-hand side is the ben-

efit of doing so. Then, under the type 1 inspection, i.e., after being punished, a dual-plant firm

is more profitable by reallocating production from plant A to B than by adopting the abatement

technology for plant A. Intuitively, if the critical firm of ψ̃a0 will not adopt the abatement tech-

nology under the type 1 inspection, then none of the firms with ψ < ψ̃a0 will adopt it. Therefore,

the above condition sets a lower bound for f1, and we denote it by f1, which is smaller than f̄1

in some parameter space (see the proof in Appendix A.2). Moreover, based on Proposition 2, if

f1 < f̄1, then there exists a range of single-plant firms that choose to adopt the abatement tech-

nology after being penalized in the first-stage inspection. Assuming f1 ∈ ( f1, f̄1), we obtain the

following result:

Proposition 4 Suppose f1 ∈ [ f1, f̄1] with f̄1 > f1 > 0. Consider a dual-plant firm where plant A is

subject to the two-stage PDP regime and plant B is subject to a one-shot penalty regime. In response to a

penalty under the two-stage PDP, the noncompliant dual-plant firms opt to shift production from plant A

to plant B rather than investing in abatement technologies at plant A.

3.3 Predictions

Now, we will summarize the model’s prediction to guide the empirical test that follows. Thus

far, the analysis highlights that the impact of the two-stage PDP varies across single-plant and

dual-plant firms. Under the two-stage PDP, single-plant firms behave the same as they would

under the one-shot penalty unless they are found in violation. However, once penalized, they

face escalating per-day fines, which forces them to take action to reduce emissions. Depending on

their productivity, firms will either adopt pollution control technologies or scale back production

to comply with the regulations. To connect to the following empirical analysis, we refer to firms

with productivity lower than ψa1 as small firms and those with productivity between ψa1 and ψa0

as large firms. Based on Propositions 1 to 3, we have the following prediction:

Prediction 1 Under the one-shot penalty, firms do not alter their compliance status even after being

penalized. Under the two-stage PDP, once penalized, single-plant firms reduce emissions as follows:

(1) Large firms reduce both emissions and emission intensity by adopting abatement technologies while

increasing output.
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(2) Small firms reduce emissions only by cutting output, with emission intensity remaining largely

unchanged (when α is close to one).

For dual-plant firms, resource reallocation across regions is feasible. If one plant is subject to

the PDP, the firm can choose to reallocate production to the other plant that is not subjected to

the PDP. Based on Proposition 4, we obtain the following prediction:

Prediction 2 Consider a dual-plant firm where plant A is subject to the two-stage per-day penalty (PDP)

and has already been penalized while plant B operates under a one-shot penalty regime. The dual-plant

firm will reallocate production from plant A to plant B. Specifically:

(1) Plant A experiences a reduction in output and emissions, while plant B experiences an increase in

both.

(2) The pollution intensity at both plants remains unchanged.

4 Data and empirical specifications

We now turn to the empirical analysis, using the Chinese regional two-stage PDP pilot as a policy

shock to test Predictions 1 and 2. This section outlines the data sources and the empirical setups,

and the next section reports the results.

4.1 Data and key outcome variables

Data source. Our data is drawn from multiple sources. First, the firms’ pollution information

comes from the Annual Environmental Survey of Polluting Firms in China. This is the most com-

prehensive firm-level pollution dataset, offering detailed information on firm-level emissions

(e.g., chemical oxygen demand [COD], nitrogen oxides, sulfur dioxide [SO2], ammonia, dust,

solid waste, and noise), abatement efforts (e.g., sewage treatment facilities or air scrubbers), and

energy consumption (e.g., fresh water, recycled water, and coal).

Second, variables on firms’ economic activities are obtained from the Annual Survey of In-

dustrial Firms, maintained by the National Bureau of Statistics of China. This unbalanced panel

dataset provides detailed firm-level information, including basic firm variables (e.g., name, ad-

dress, industry, and products), annual sales, and variables in financial statements (e.g., balance

sheet, income statement, and cash flow statement).

Third, data collected by the Institute of Public and Environmental Affairs provides compre-

hensive records from 2004 onward on environmental penalties imposed on firms for illegal pol-

luting activities. It includes the nature of the violations, types of penalties, and amounts of mon-

etary fines.
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Finally, the business registration data from the State Administration for Industry and Com-

merce (SAIC) is used to identify firms and their affiliated firms. This dataset contains the firm

name, identification number, registration date, registered capital, and legal representative. No-

tably, it records the shareholder structure of companies. We use this information to map the

ownership between firms.

The regression dataset. We construct our regression dataset via a series of steps. To start, we

generate a comprehensive nationwide dataset of manufacturing firms by merging the aforemen-

tioned datasets, using the firm name as the identifier. This merged dataset provides detailed

information on both firms’ polluting behaviors and their economic activities. Next, we iden-

tify whether a firm is capable of relocating production across regions. To do so, we follow the

approach of Chen et al. (2021), utilizing the SAIC dataset to link each firm (referred to as the

”current firm”) with three types of affiliates: (1) subsidiaries owned by the current firm, (2) firms

with a shareholder relationship to the current firm (considering up to two levels of shareholder

linkage with an ownership threshold of 25%), and (3) parent firms, where the current firm is a

wholly-owned subsidiary of the parent company. In the regression analysis, we treat all affiliated

firms (subsidiaries, shareholder-linked firms, and parent firms) as “plants” within a multiplant

firm.16

For the benchmark regression analysis, we define the treatment group as firms located in

Shenzhen (starting in 2010) and Chongqing (starting in 2007), with firms located in geographi-

cally adjacent cities forming the control group.17 Our primary dataset of empirical study consists

of 3, 883 firms. Of these, 313 firms have affiliates outside the regions; thus, they have the potential

to shift production across regions. These firms are classified as multiplant firms (corresponding

to dual-plant firms in the model).18 The remaining 3, 570 firms have no affiliates and are classified

as single-plant firms.

We further divide single-plant firms into large and small firms based on their sales in the

baseline year. For firms in Chongqing and its neighboring cities, the baseline year is 2007, while

for firms in Shenzhen and neighboring cities, it is 2010. We calculate the median sales for all firms

in the baseline year. Firms with sales above the median are classified as large and those below as

16Treating affiliates as plants captures the essence of multiplant behavior, where firms reallocate production or emis-
sions across their network in response to regulatory changes. While it is true that these affiliates may operate indepen-
dently or engage in different production processes, this approach is consistent with the standard practice in the literature
on firm networks and environmental regulations (see, e.g., Chen et al. 2021; Cui et al. 2023). Given the data limitations
and the absence of more granular information on the degree of operational integration or industry differences between
affiliates, this assumption represents the best feasible approximation. To ensure robustness, we conduct sensitivity anal-
yses based on ownership thresholds, confirming that our results remain consistent under alternative specifications.

17The control group consists of firms located in the following cities: Guangzhou, Zhuhai, Foshan, Shanwei, and
Huizhou in Guangdong Province; Neijiang, Ziyang, Luzhou, Yibin, Guang’an, Suining, Nanchong, and Dazhou in
Sichuan Province; Zunyi and Tongren in Guizhou Province; Xiangxi Tujia and Miao Autonomous Prefecture and En-
shi Tujia and Miao Autonomous Prefecture; and Ankang in Shaanxi Province. These cities were selected due to their
proximity to the pilot cities, which allows them to serve as an appropriate control group.

18Most multiplant firms operate more than two plants. For example, 158 multiplant firms are located in Chongqing
and Shenzhen, collectively operating 1,004 affiliates in other regions.
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small. Using this method, we classify 1,724 single-plant firms as large and 1,846 as small.

Key outcome variables. Of particular importance to the empirical analysis are the variables

related to firm production, pollutant emissions, and abatement effort. We use the amount of

COD and SO2 to measure firms’ annual emissions (in kilograms). These two variables capture

the most common water and air pollutants found in firms’ emissions data.

Firm output is measured by firm-level annual sales (in RMB 10,000). We divide the emissions

of COD and SO2 by the firm’s annual sales, which gives two intensity variables denoted by

intensityCOD and intensitySO2 .

For abatement efforts, we consider the number of treatment facilities operated by firms, in-

cluding wastewater and waste gas treatment facilities, denoted as f acilityw and f acilityg, respec-

tively. Additionally, we measure the treatment capacities of these facilities: abilityw indicates the

capacity for wastewater treatment (in tons per day), and abilityg represents the capacity for gas

treatment (in cubic meters per day). Table 2 reports the summary statistics for these variables.

4.2 The regression specifications

We employ a standard difference-in-difference (DID) approach and specify the empirical model

as follows:

yit = β1PDPct + β2PDPct × Punishit + β3Punishit + X′
itγ + θt + µi + ϵit, (7)

where yit represents a set of outcome variables introduced above, including emissions, pollution

intensity, adoption of abatement facilities, treatment capacity, and sales of firm i in city c in year

t.19 PDPct is a dummy variable equal to 1 if the two-stage PDP is in effect in city c from that

year onward and 0 otherwise; specifically, PDPct = 1 for Chongqing after 2007 and for Shenzhen

after 2010.Punishit is a dummy variable that equals 1 if firm i has been penalized by the local

environmental agency in the current year or any prior year since 2004; otherwise, it equals 0.

The interaction term PDPct × Punishit captures whether penalized firms are subject to the two-

stage PDP in year t. Next, Xit is a set of time-varying firm-level control variables; θt represents

year-fixed effects, which account for time-varying factors, such as changes in other government

policies, that may influence both the treatment and control groups; µi is the firm-fixed effects;

and ϵit is the error term.

Our main parameter of interest in Eq. (7) is β2, which estimates the impact of the two-stage

PDP pilot on firm production and pollution outcomes. For example, if y represents firms’ annual

19In our regressions, we use the natural logarithm for the following five outcome variables: COD, SO2, sales, abilityw,
and abilityg. The proportions of 0 values for COD, SO2, sales, abilityw, and abilityg are 2.68%, 4.03%, 0.01%, 2.44%, and
2.30%, respectively. Given the small proportion of zero values, we exclude those values from the regressions. Addi-
tionally, we conduct Poisson regressions to account for these zero values, and the results remain robust. The Poisson
regression results are available upon request.
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emissions of a pollutant, a significantly negative β2 would indicate that the PDP pilot incentivizes

firms to reduce emissions. Furthermore, to examine how firms with different levels of produc-

tivity reduce emissions, as outlined in Prediction 1, we estimate Eq. (7) separately for large and

small firms.

To assess whether multiplant firms would relocate production to the plants that are not ex-

posed to the PDP pilot (see Prediction 2), we use the sample of the firms located in Chongqing,

Shenzhen, and their neighboring cities that have at least one affiliate outside these regions. In

the language of the model, these firms are plant As, which are potentially subjected to the PDP

pilot. We run regressions based on Eq. (7) on this sample to assess whether these plant As reduce

production and emissions and whether they improve pollution intensity after being penalized

under the two-stage PDP, as outlined in Prediction 2.

We also examine whether the affiliates located outside Chongqing and Shenzhen (referred

to as plant B in the model) increase their output and emissions when their in-the-pilot-region

counterpart, namely plant A, is penalized under the PDP pilot. To do this, we create a sample of

plant Bs and then assess how these plants respond regarding production, emissions, and abate-

ment efforts when their corresponding plant As are penalized. The regression specification is as

follows:

yB
it = β̃1PDPA

ct + β̃2PDPA
ct × PunishA

it + β̃3PunishA
it + XB′

it γ̃ + θB
t + µB

i + ϵB
it, (8)

where the outcome variables (yB
it) and control variables (XB

it) pertain to plant B and the shock

is whether plant A (the firm’s corresponding affiliate in Chongqing and Shenzhen) is penalized

under the PDP pilot.

5 Empirical results

We first present the results on the average effects of the PDP pilot (Section 5.1). We then proceed

with a detailed analysis of firms’ responses based on their size and whether they operate single

or multiple plants (Sections 5.2 and 5.3).

5.1 The average effect of per-day penalty

Baseline result. Table 3 presents the baseline estimates of Eq. (7) for all firms in our sample. All

regressions include year- and firm-fixed effects, and we additionally control for the interaction

between year dummies and each firm’s sales in the year 2004 to account for the initial differences

in firm size.

In columns (1) and (2), the dependent variables are the total amounts of log COD and log SO2,

respectively. The estimates for β2 are both negative and statistically significant at the 1% level, in-
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dicating that the two-stage PDP significantly reduces firms’ emissions once a violation has been

detected. Specifically, the escalated per-day fines under the two-stage regime lead to a reduc-

tion of 62.8% in COD emissions and 29.6% in SO2 emissions. The coefficients for Punish are

insignificant, suggesting that firms subjected to standard one-shot penalties do not reduce emis-

sions, even after being punished. Similarly, the coefficients for PDP are insignificant, indicating

that firms subject to the two-stage PDP but not penalized produce the same emissions that they

would under the one-shot penalty.

Columns (3) and (4) show that firms subjected to the two-stage PDP significantly reduce their

pollution intensities after inspection, suggesting that they are more likely to adopt cleaner tech-

nologies. This contrasts with firms under the one-shot penalty, where the coefficients for Punish

remain insignificant, indicating that these firms are likely to continue using dirty technologies.

Similarly, the coefficients for PDP are insignificant, illustrating that firms not penalized under

the two-stage PDP do not alter their pollution intensity. Overall, these findings suggest that

firms penalized under the two-stage PDP are more likely to reduce both emissions and emission

intensity, consistent with Prediction 1.

In terms of output, column (5) indicates that the two-stage PDP has no significant effect on

annual sales, whether the firm is being penalized or not. However, as we will see below, this

result obscures the heterogeneous responses of firms of different sizes.

Mechanisms: Improved abatement capacities. To better understand how emission reductions

are achieved, we estimate Eq. (7) using the total number of abatement facilities installed as the

dependent variable. Our dataset provides detailed information on the types of abatement facil-

ities, enabling us to distinguish between those used for water and air pollution. The interaction

term coefficients in columns (6) and (7) of Table 3 show that penalized firms under the PDP pilot

are more likely to install additional treatment facilities. This is further supported by the results in

columns (8) and (9), where the dependent variables are the firm’s daily treatment capacities for

wastewater and waste gas. The significant positive coefficient on PDP × Punish indicates that

penalized firms under the PDP pilot expand their capacity to treat pollutants.

Parallel trend test. A key assumption for DID identification is that firms in the treatment and

control groups share common pre-pilot trends. This ensures that any differences in outcome

changes over time are solely attributable to the pilot. To rule out preexisting differential trends,

we modify Eq. (7) by replacing the interaction term between Punish and PDP with interactions

between Punish and year dummies and plot the yearly estimates in Figures 1 and 2. Figure

1 presents four panels with the dependent variables of log COD, log SO2, intensityCOD, and

intensitySO2 . Similarly, Figure 2 shows the results for f acilitiesw, f acilitiesg, log abilityw, and

log abilityg. In each figure, the estimated coefficients are statistically insignificant in the pretreat-
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ment period, followed by a sharp, permanent increase after the pilot begins. These results sug-

gest that there are no preexisting differential trends between the treatment and control groups,

supporting the validity of the DID approach in identifying the effects of the PDP pilot.

Other robustness checks. To further address the concern that omitted differential trends corre-

lated with the pilot regions might bias our estimates, we conduct a placebo test by treating firms

in cities adjacent to Shenzhen and Chongqing as the false treatment group, with firms in cities

adjacent to these areas serving as the control group (excluding Shenzhen and Chongqing). The

rationale behind this approach is that regions sharing common borders should have sufficient

similarity in terms of economic conditions. The insignificant estimates of β2 in Table 4 indicate

that our results are unlikely to be driven by other confounding factors.

Another robustness check we conduct uses firms in Ningxia as the treatment group and those

in neighboring cities of Ningxia as the control group.20 Ningxia is a provincial-level autonomous

region located in western China. Although Ningxia planned to implement the two-stage PDP

pilot—its legal provision was included in the amendment to the Regulation on Environmen-

tal Protection of Ningxia Hui Autonomous Region—the policy has never actually been imple-

mented.21This unique situation provides an opportunity to evaluate whether the anticipation

of the policy, rather than its actual implementation, could have influenced firm behavior. As

shown in Table 5, the results indicate that the coefficients of the key policy-related variables are

not statistically significant. This suggests that our baseline results are not driven by the potential

anticipation effect, further reinforcing the robustness of our findings.22

5.2 The differing effects of per-day penalty on large and small firms

Based on our model, the PDP pilot should have introduced differing incentives for firms of differ-

ent sizes, even though the overall effect on emissions would have been similar. For this analysis,

we focus on firms without affiliates and examine how the baseline results differ between large

and small firms.

In Table 6, the coefficients of the interaction term are consistently negative and statistically

significant in columns (1) to (4), indicating that large firms exposed to the policy significantly

reduce their emissions and pollution intensity compared to those not exposed. This is further

supported by the increase in sales (column 5) and enhanced capabilities in pollution abatement

facilities (columns 6 to 9). These findings align with the model’s prediction that when faced with

20The neighboring cities we use include Yanan, Yulin, Baiyin, Qingyang, Pingliang, Alxa League, and Bayannur.
21Although the Regulation on Environmental Protection of Ningxia Hui Autonomous Region (amended in 2009) in-

cluded provisions for a PDP, stipulating that violators who fail to rectify their illegal emissions could be fined daily, the
policy was not effectively implemented. Ningxia issued its first PDP fine only in 2015 (i.e., after the PDP policy was
implemented nationally), with a daily fine of RMB 18,900 imposed on Brother Caixing Chemical for 10 days of excessive
emissions.

22Due to limited data on wastewater treatment facilities and their abatement capacity after 2010, we have restricted our
analysis to wastewater and its treatment facilities for the Ningxia region placebo test.
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the PDP, larger firms tend to invest in abatement technologies to meet compliance standards

rather than reduce production.

In contrast, as our model predicts, small firms, which often cannot afford the high costs of

pollution abatement, tend to comply by reducing output to avoid overly heavy penalties that

will be imposed after reinspections. This is supported by the significantly negative coefficients

of the interaction term in columns (1), (2), and (5) of Table 7.23 Furthermore, the insignificant

coefficients of the interaction term in columns (3), (4) and (6) through (9) suggest that small firms

are generally reluctant to adopt abatement technologies to reduce pollution intensity.

5.3 Production shifts within multiplant firms

Our model predicts that firms with affiliates will shift production from plants subject to the PDP

(located within the pilot regions) to those that are not (outside the pilot regions). In line with the

model’s notation, we refer to the former as Plant As and the latter as Plant Bs. To comprehensively

assess this production shift, we first analyze the responses of Plant As, followed by those of Plant

Bs.

Responses of the plants that are subjected to PDP (plant As). We begin by analyzing the sam-

ple of multiplant firms located in Chongqing, Shenzhen, and neighboring cities. We estimate Eq.

(7) for nine outcome variables of the plant As; the results are presented in Table 8. In columns (1)

and (2), the significantly negative coefficients on the interaction term PDP × Punish suggest that

firms facing PDPs reduce emissions. However, columns (3) and (4) show no significant changes

in pollution intensities. Despite reducing production (as shown in column 5), these firms are

reluctant to expand their abatement capacities, as reflected by the insignificant coefficients of the

interaction terms in columns (6) through (9).

Response of the plants whose affiliates are exposed to the PDP pilot (plant Bs). Next, we

provide evidence that multiplant firms, with their plant As facing PDPs, shift production to the

corresponding plant Bs. To examine this, we estimate Eq. (8), and the coefficient of the interaction

term, β̃2, captures the spillover effect of the PDP pilot within the multiplant firms’ production

networks. The results are presented in Table 9.

Columns (1) and (2) in Table 9 show that following the PDP shock (when their plant As are

penalized and subject to PDPs), plant Bs experience an increase in COD and SO2 emissions.

However, there is no significant change in emission intensities, as shown in columns (3) and (4).

This aligns with Prediction 2, as plant Bs are absorbing production shifted from their affiliated

plant As, without burdening extra regulatory pressures. As a result, while emissions rise at

23The interaction term coefficient in column (2) is still at around 10% significance level.
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plant Bs, emission intensities remain unaffected. This lack of change is further reflected in the

insignificant coefficients of PDP × Punish for abatement facilities and capacity in columns (6) to

(9). The positive coefficient of PDP × Punish in column (5) reinforces the findings from Table 8,

indicating that multiplant firms have redistributed production across affiliates to minimize the

compliance cost with the PDP.

6 Quantitative analysis

In this section, we extend the benchmark model of Section 3 and implement a quantitative eval-

uation of the PDP pilot. The aims of this exercise are two-fold. First, and most importantly, we

calibrate the model and use counterfactual analysis to compare the overall effects of the Chinese

two-stage PDP and the U.S. one-stage PDP. As noted in Section 2, the two approaches differ from

each other in both the guiding principle and levy approach. The Chinese two-stage PDP mainly

focuses on pushing violating firms, whose illegal emissions have already been detected, to rectify

by imposing an inevitable and disproportionately higher new penalty if the misconduct contin-

ues. As shown both theoretically (in Section 3) and empirically (in Section 5), firms that have

not been penalized under the two-stage PDP are not motivated to reduce emissions, while penal-

ized firms are incentivized to comply. The U.S. one-stage PDP, by contrast, is designed to deter

all polluters from illegal emissions with an extremely high fine at a relatively lower probability.

Given the distribution of firms’ productivity and compliance costs in China, our counterfactual

analysis investigates which approach is more effective in reducing emissions while minimizing

output losses. Second, as a by-product of this analysis, we estimate parameters of economic in-

terest, such as the cross-firm distributions of productivity and compliance costs. The quantitative

model also allows us to validate the key findings from the previous reduced-form analysis.

6.1 Parameterization

We retain most of the setup from Section 3 and parameterize the cross-firm productivity distri-

bution as log-normal, i.e., log(ψ) ∼ N(0, σψ), with Gψ(·) as the CDF. A key extension here is

that we now allow for heterogeneous compliance costs f , assuming that f follows a log-normal

distribution, with the mean depending on the firm’s productivity (whereas in the benchmark

model of Section 3, f was the same across firms). This assumption indicates two things: First,

the compliance cost varies among firms with the same productivity, and second, the expected

compliance cost changes with the firm’s productivity. These variations can be attributed to id-

iosyncratic factors and differences in the technologies that firms employ and allow the model to

better fit the data moments.

A tactic that we will use in calibration is that the heterogeneity in f can be equivalently ex-
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pressed as the heterogeneity of the adoption threshold ψa, with the latter is more convenient for

calibration. To see this, recall that the firm profits using clean and dirty technologies (under the

one-shot penalty) are as follows:

πc(ψ) = η−βτ Λψβψ ,

πd(ψ) = (1 − λκ0)
βκ Λψβψ ,

where βκ = σ
(1−α)σ+α

, βτ ≡ αe(σ−1)
(1−α)σ+α

, βψ ≡ αl(σ−1)
(1−α)σ+α

, Λ = 1
βκ

(
σ−1

σ

) α(σ−1)
(1−α)σ+α

(
w
αl

)−βψ
(

τ
αe

)−βτ

. The

input prices are included in Λ, with w referring to the nominal wage and τ the nominal emission

fee.24 By Eq. (3), we have

log(ψa) =
1

βψ

(
log( f ) + log(δ)− log(Λ)− log[η−βτ − (1 − λκ0)

βκ ]︸ ︷︷ ︸
constant

)
, (9)

where we see that if log f follows normal distribution, which depends on ψ, so does log(ψa).

We denote the cumulative distribution function of ψa by Ga(ψa|ψ). The dependence of Ga on

ψ captures the idea that the expected abatement cost varies with the firm’s productivity. The

variance of ψa is normalized to one.

Intuitively, the relationship between the expected abatement costs and a firm’s productivity

does not need to be monotonic. For example, low-productivity firms may need to renovate their

production processes to connect to abatement equipment, resulting in decreasing adoption costs

as productivity increases. However, as productivity grows further, larger-scale production may

lead to higher abatement adoption costs due to the increased complexity of integrating abate-

ment technologies into larger operations. To capture this potentially non-monotonic relationship

between productivity and the (expected) abatement costs, we parameterize the mean of log(ψa),

denoted by µa, as polynomial function P(·) of log(ψ):

µa = P(log ψ) ≡ β0 + β1 log ψ + β2(log ψ)2 + β3(log ψ)3. (10)

We have tried higher-order polynomials, but the results do not change meaningfully. Our quan-

titative model can be summarized by the following data generating process:25

1. Consider a large number of firms. Each firm first draws a productivity level, log(ψ) ∼

N(0, σψ). Conditional on log(ψ), the firm then draws an adoption threshold, log(ψa) ∼

N (µa(log ψ), 1).

2. Based on these draws, a firm decides on its production technology. If ψ ≥ ψa, the firm

adopts abatement equipment and produces using clean technologies. Otherwise, it pro-

duces using dirty technologies.

24Since we shall target the model moments to the data moments, we choose not to normalize w = 1 for this exercise.
25In this exercise, we treat δ as an effective discount factor and choose not to explicitly model the (exogenous) entry

and exit of firms.
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3. Firms are randomly inspected by the local environmental regulatory agencies with proba-

bility λ. If a dirty firm is inspected, it is fined. Under the one-shot penalty, the firm is fined

a fraction, κ0, of its revenue.

To match the sales in the data, we have to compute the counterparts in the model. Note that

R(ψ) = βκπ(ψ). Taking logs yields

log (Rc(ψ)) = Cc + βψ log(ψ),

log (Rd(ψ)) = Cd + βψ log(ψ),

with Cc ≡ log(βκ)− βτ log(η) + log(Λ) and Cd ≡ log(βκ) + βκ log(1 − λκ0) + log(Λ) = Cc +

log
(
(1−λκ0)

βκ

η−βτ

)
. We treat the ratio in the log operator as a parameter: ζ ≡ (1−λκ0)

βκ

η−βτ . That is,

Cd = Cc + log(ζ). We then also take Cc as a parameter to calibrate and note that Cc encapsulates

unknown nominal input prices.

6.2 Calibration

We first calibrate a subset of parameters based on the literature. We follow Chen et al. (2021) to

calibrate σ = 4 and the returns of scale parameter α = 0.9. We use the estimates from Hang et

al. (2023) to calibrate αe = 0.017. Then, αl = 0.9 − 0.017 = 0.883. Based on these values, we can

compute βκ = 3.0769, βψ = 2.0377, and βτ = 0.0392. We further set β0 such that the average firm

with log(ψ) normalized to 0 has a compliance rate of 57.4%, that is, Φ(−β0) = 0.574, where Φ(·)

is the CDF of a standard normal distribution. This gives β0 = −0.1866.26 Finally, to calibrate ζ,

we again use condition (3). Consider a firm of productivity ψ, its indifference condition between

adopting and not adopting the abatement technology is

ζ =
(1 − λκ0)

βκ

η−βτ
= 1 − βκ

δ fa(ψ)

Rc(ψ)
, (11)

where fa(ψ) is the adoption cost of the indifferent firm among firms of productivity ψ. According

to the model, the ratio δ fa
Rc(ψ)

is constant across ψ. We let δ fa(ψ)
Rc(ψ)

= 0.01 to match that in the Chinese

data, and the investment share of abatement equipment in the total output is on average 1% (Qi

et al. 2021). Then, ζ = 1 − 3.0769 × 0.01 = 0.9692.

After calibration, we are left with six parameters to estimate

θ =
(

Cc, λ, σψ, β1, β2, β3

)
.

Here, Cc represents the constant terms in log(Rc); λ is the inspection probability; σψ is the stan-

dard deviation of firm productivity; and β1 to β3 are coefficients in the polynomial (10). We

26The proportion of firms adopting clean technologies was calculated by Qi et al. (2021) based on China’s National
General Survey of Pollution Sources.
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estimate θ using the simulated method of moments:

θ̂ = arg min
θ∈Θ

[md − m(θ)]′ W [md − m(θ)] ,

where md represents the data moments, m(θ) the model-simulated moments, and W the optimal

weighting matrix.27

The moments used in our estimation are as follows: (1) the proportion of firms that are fined;

(2) the mean of log(sales) for all firms in the sample; and (3) the standard deviations of log(sales),

as well as the 90–10 and 90–50 percentile differences of log(sales), calculated separately for fined

and non-fined firms. These data moments are based on our sample of firms from 2004 to 2006,

which includes firms in Chongqing, Shenzhen, and the surrounding regions before the pilot took

place in 2007 in Chongqing.

Although all six parameters are estimated jointly, their intuitive connections to the data mo-

ments are as follows: Cc is primarily informed by the mean of log(sales), while λ is mainly

determined by the proportion of firms being fined. The parameter σψ is jointly driven by the

standard deviations and percentile ratios of log(sales). Finally, β1 through β3 are informed by

the differences in the percentile ratios of log(sales) between fined and non-fined firms.

Results. Table 10 reports the calibrated parameters, while Table 11 lists the targeted and simu-

lated moments. In this table, we use F ∈ {0, 1} to indicate whether a firm has been penalized.

We separately compute the moments of sales for penalized (F = 1) and non-penalized (F = 0)

firms. Our model generates moments that align closely with the actual data. Specifically, it re-

produces the pattern that the variations in sales are generally higher among penalized firms than

non-penalized firms.

Based on the calibrated parameter values, we examine how firms’ expected abatement costs

and compliance rates change with productivity. Figure 3a shows the expected abatement costs

(represented by µa) across log(ψ) (solid curve), and for comparison, we also plot a 45-degree line

(red dashed). Figure 3b displays the corresponding compliance rate across log(ψ).

We observe that when ψ is low, the expected compliance cost (represented by µa) is high, i.e.,

the black curve is positioned well above the 45-degree line in Figure 3a; therefore, the compliance

rate is low (slightly higher than 10%). As ψ increases, the expected compliance cost first decreases

and then increases together with log ψ. Consequently, the compliance rate increases rapidly and

eventually stabilizes around 50% to 60%.

While conventional wisdom suggests that more productive firms would incur higher costs

when adopting cleaner technologies due to their larger production scales, our findings reveal

that adoption costs may actually decrease with productivity when it is in the lower range. This

27We use bootstrapping to calculate the variance–covariance matrix of the moments, and the weighting matrix is de-
rived as the inverse of this variance–covariance matrix.
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seemingly counterintuitive result may be due to the fact that upgrading production lines to ac-

commodate clean technologies can be disproportionately expensive for smaller firms. For exam-

ple, firms with low productivity often face significant upfront costs, such as installing pollution

abatement facilities, improving infrastructure, and modernizing manufacturing equipment to

connect with the piping systems necessary for emission reduction (Helland 1998).

It is worth noting that in the middle range of productivity, where µa is close to log(ψ), in-

creased regulatory scrutiny and higher fines can easily reduce µa below log(ψ), leading to a

downward shift of the solid curve in Figure 3a. Consequently, mid-productivity firms are more

likely than firms in other productivity ranges to switch from noncompliance to compliance. This

segment of firms thus becomes the primary target of enforcement efforts aimed at reducing dis-

charges.

6.3 Counterfactual analysis: Comparing one- and two-stage per-day penalty

Next, we conduct a counterfactual analysis to compare compliance and production outcomes

under the one-stage and two-stage PDP. We begin by simulating adoption threshold ψa for each

firm under the one-shot penalty. Based on this, we then calculate the adoption thresholds for each

firm under both the one-stage and two-stage PDP scenarios. The procedure is outlined below.

For the two-stage PDP, the initial inspection rate (λ) and fine (κ0) are the same as the one-shot

penalty. However, if a firm is penalized, it faces a follow-up inspection with a probability of one.

Should the firm fail to comply, the fine escalates to κ1 = d × κ0. In our simulations, we consider

the following three values for d: 10, 20, and 30.28 The adoption thresholds under two-stage PDP

are ψa in initial inspections ,

ψI I
a in follow-up inspections ,

where

ψI I
a = ι(d)ψa < ψa

and ι(d) ≡
[

η−βτ−(1−λκ0)
βκ

η−βτ−(1−dκ0)
βκ

] 1
βψ ∈ (0, 1). The term ι(d) is strictly decreasing in d; that is, as

d increases, ψI I
a becomes smaller, making it more likely for firms to switch from violation to

compliance. Alternatively, this can be seen as the expected threshold of compliance shifting

downward: µI I
a = µa + log[ι(d)] < µa.

For the one-stage PDP, the inspection rate remains λ (as in routine inspections), but the fine

28Under China’s PDP policy, the maximum number of violation days is capped at 30, and the agency has discretion
over when to conduct inspections within this period. For the purposes of this quantitative analysis, we assume that
dual-plant firms shift production to plants outside the pilot region (and assume f1 = 0).
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increases to κ1 = dκ0. The adoption threshold under the one-stage PDP becomes

ψI
a = ι(λd)ψa < ψa,

where ι(λd) ≡
[

η−βτ−(1−λκ0)
βκ

η−βτ−(1−λκ1)
βκ

] 1
βψ . The one-stage PDP can be viewed as a special case of the two-

stage PDP where the follow-up inspection rate is λ instead of 1. Since ι(d) < ι(λd), the following

relationship holds among the three thresholds:29

ψI I
a < ψI

a < ψa.

6.3.1 The penalized firms under two-stage per-day penalty

To connect with the empirical findings from the previous section, we begin by examining how

firms respond to the two-stage PDP policy. Specifically, we focus on firms that were found in

violation during routine inspections and subsequently penalized. These firms must have ψ < ψa.

Under the two-stage PDP, if these firms fail to rectify their misconduct, they are subjected to

additional inspections by the environmental agency and face an escalated penalty. As shown

above, they will switch to compliance if ψ > ψI I
a .

In Figure 4, panel (a) displays the compliance rates among these firms. The rates are gener-

ally high across most productivity levels (approximately 80% for d = 30), with lower compliance

rates observed among firms at the very low end of the productivity range due to their higher

compliance costs (about 40%–50% for d = 30). The switch from violation to compliance is sub-

stantial because these firms all opt for violation under the one-shot penalty system.

Panels (b) and (c) show the expected changes in output and pollution intensity when firms

are facing PDPs compared to when they are only subjected to the one-shot penalty. The patterns

are consistent across different values of d. We observe that smaller firms (those with lower pro-

ductivity) experience a larger decrease in output, while their pollution intensity decreases less.

In contrast, larger firms (those with higher productivity) show a smaller reduction in output but

a greater reduction in pollution intensity.

Combined with the results from panel (a), we conclude that under the two-stage PDP, penal-

ized firms—facing escalated fines for noncompliance—reduce emissions. Larger firms tend to

adopt abatement technologies, while smaller firms primarily reduce output. These results rein-

force our empirical findings from Section 5, confirming that the two-stage PDP effectively drives

emission reductions through differentiated firm responses.

29To calculate ψI
a and ψI I

a , we use κ0, the average penalty-to-sales ratio. This value, based on the sample of penalized
firms prior to the pilot, is κ0 = 0.3467%.
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6.3.2 The overall compliance rate

Under the one-stage PDP, the compliance rate for a firm with productivity ψ is given by

Pr(ι(λd)ψa < ψ) = Ga

(
ψ

ι(λd)

)
.

Therefore, the overall expected compliance rate (across firm productivity) can be expressed as

Eψ

[
Ga

(
ψ

ι(λd)

)]
.

For the two-stage PDP, the compliance rate for a firm with productivity ψ that has been fined in

the first stage is

Pr(ι(d)ψa < ψ) = Ga

(
ψ

ι(d)

)
.

However, because only a small fraction of violations are actually inspected and penalized (with

the calibrated inspection rate in China being 4.75%), the overall compliance rate is a weighted

average of the compliance rates of inspected and non-inspected firms:

Eψ

[
λGa

(
ψ

ι(d)

)
+ (1 − λ)Ga(ψ)

]
.

From these results, it is clear that both PDP systems yield higher compliance rates than the

standard one-shot penalty and that both compliance rates increase in λ and d. However, which

policy is more effective overall remains ambiguous. For instance, λ influences the compliance

rate under the one-stage PDP nonlinearly, with a marginal effect of ∂Ga

(
ψ

ι(λd)

)
/∂λ, while it

affects the compliance rate under the two-stage PDP linearly, with a marginal effect of Ga

(
ψ

ι(d)

)
.

The ultimate impact depends on the distribution of productivity, G(·), and the distribution of

compliance costs, Ga(·). Based on our calibrated distributions, we demonstrate below that the

one-stage PDP consistently outperforms the two-stage PDP in terms of the overall compliance

rate.

Table 12 presents compliance rates under different policy scenarios. We calculate these rates

for two values of λ (the calibrated value of 0.0475 and a higher hypothetical value of 0.1) and

for three values of κ1 (10κ0, 20κ0, and 30κ0). The first row shows the compliance rates under the

one-shot penalty policy, where the fine is set at a fixed level of κ0. The second row displays the

rates for the one-stage PDP, in which compliance occurs if and only if ψ ≥ ψI
a. The third and

fourth rows provide the compliance rates under two variations of the two-stage PDP. The ”In-

clude Leakage” scenario (third row) assumes that dual-plant firms do not comply, allowing for

production shifting (leakage) to non-penalized plants. The ”Exclude Leakage” scenario (fourth

row) assumes that all firms operate a single plant, thereby eliminating any leakage effect. Fi-

nally, the last row presents the compliance rates for firms facing the second-stage inspection in

the two-stage PDP system.

We begin by examining the results in the first three columns, from which three key observa-
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tions emerge. First, although all PDP scenarios lead to an increase in compliance rates, the effect

is most pronounced under the one-stage PDP. For example, when d = 30, the compliance rate

reaches 54% under the one-stage PDP compared to a maximum of 49% under the two-stage PDP.

This holds for all values of d. Second, comparing the two scenarios within the two-stage PDP, we

find that eliminating production leakage does not significantly improve compliance rates. This

is primarily because most firms in our sample operate only a single plant, limiting the potential

for shifting production. Lastly, while compliance rates during follow-up inspections are notably

higher (81.6% for d = 30, λ = 0.0475), the overall compliance rate under the two-stage PDP

remains relatively low due to the low initial inspection rate.

One might expect that as the inspection probability (λ) increases, the two-stage PDP will lead

to a higher compliance rate than the one-stage PDP. However, our results indicate that while

compliance under the two-stage PDP does indeed rise with λ, it is still outpaced by that under

the one-stage PDP. For example, in the last three columns of Table 12, where λ is increased to 0.1,

in the scenario of d = 30, the compliance rate under the one-stage PDP reaches 59% compared

to only 50% under the two-stage PDP. Our analysis concludes that the compliance rate under the

two-stage PDP is relatively modest when assessed against the calibrated distribution of Chinese

firms and falls short of the effectiveness observed under the one-stage PDP.

6.3.3 Output, emissions, and pollution intensity

Table 13 illustrates the percentage changes caused by three variants of the PDP policy relative to

the one-shot penalty in output (panel a), emissions (panel b), and pollution intensity (panel c)

across three penalty levels (κ1 = 10κ0, 20κ0, 30κ0) and two inspection rates (λ = 0.0475, 0.1).30 As

shown in the table, under both types of PDP policy, the emissions, pollution intensity, and total

output average across firms all decline compared to those under the one-shot penalty.

There are notable differences between the one-stage and two-stage PDP policies. Both emis-

sions and pollution intensity see more significant reductions under the former compared to the

latter. For example, consider the scenario in the third column (λ = 0.0475 and κ1 = 30κ0). Under

the one-stage PDP, the increased penalties lead to a reduction in emissions and pollution inten-

sity by 7.3% and 7.2%, respectively. In contrast, under the two-stage PDP (excluding leakage

effects), these reductions are only 1.77% and 1.73%, respectively. Therefore, the one-stage PDP

has an effect on emissions and abatement that is 5–7 times larger than that of the two-stage PDP.

However, this stronger effect on pollution comes at the cost of a slightly higher decline in

overall output. In the case where λ = 0.0475 and d = 30 (as seen in the third column of panel a),

the total output decreases by 0.1% under the one-stage PDP compared to a 0.04% decrease under

the two-stage PDP. However, if the social welfare function prioritizes output, it is possible that

30To compute emissions, we calibrate b = 2.8. Then, by definition of η, we have ξ∗ = b
b−1 (1 − η) = 0.8451. That is,

emissions are reduced by 84.51% using clean technologies.
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the two-stage PDP may be more favorable than the one-stage PDP despite its much weaker effect

on pollution reduction.

6.3.4 Comparison across productivity

We now examine how compliance rates, output, and emissions vary across productivity. For this

analysis, we set κ1 = 30κ0.

Panel (a) in Figure 5 illustrates the compliance rates across productivity under the one-shot

penalty, the one-stage PDP, and the two-stage PDP. We observe that the compliance patterns for

the three policies are similar. Consistent with previous results (see Table 12), the compliance rate

shows a larger increase under the one-stage PDP compared to the two-stage PDP.

Panels (b) and (c) depict the changes in total output and pollution intensity under the one-

stage PDP (solid black curve) and two-stage PDP (dashed red curve), relative to the one-shot

penalty. Given the limited improvement in compliance with the two-stage PDP, smaller changes

in these variables are expected under this approach. This is evident from the almost unchanged

pollution intensity shown in panel (c) (red dashed curve), while the one-stage PDP demonstrates

a more substantial effect. Specifically, under the latter, output decreases slightly by up to 0.4%

across most log(ψ) values, but emissions drop by approximately 8%. Consequently, pollution

intensity declines by around 8%. As illustrated in panel (c), the one-stage PDP has a more pro-

nounced impact across the entire range of ψ than the two-stage PDP.

Lastly, under both PDP policies, the output loss is more significant for low-productivity firms,

while decreases in pollution intensity are less pronounced for these firms. This suggests that

heterogeneous responses exist under both policies: Smaller firms tend to lower emissions by

scaling back production, whereas intermediate to large firms are more likely to adopt cleaner

technologies.

7 Conclusion

We analyzed the impact of a pilot PDP policy in China on firms’ production and abatement

decisions. This policy is an institutional transplant from developed to developing countries,

with Chinese policymakers modifying the original one-stage inspection process into a two-stage

approach. While this adjustment may seem minor, we illustrate that it introduces significant

changes in the incentives faced by regulated firms. Using firm-level data, we find that the Chi-

nese PDP pilot effectively reduces pollutant emissions; however, firms’ responses vary depend-

ing on firm size and production networks. Our quantitative model further shows that the U.S.

one-stage PDP is more effective in encouraging compliance, resulting in greater reductions in

both emissions and pollution intensity. However, this increased effectiveness comes at the ex-

31



pense of a higher decline in output. Lastly, we observe that both the one-stage and two-stage

PDP policies have differential impacts depending on firms’ productivity levels. This hints that

the distribution of firm productivity within a country is a critical factor in assessing policies.

Our research has three noteworthy implications, particularly for developing countries, which

often learn from the institutions created by developed countries. First, assessing whether the

original or a modified institution is more effective can be challenging, as even minor adjustments

can significantly alter compliance incentives. In the case of the two-stage PDP, by contrast to the

original one-stage policy format, delaying the escalated PDPs to the second stage weakens such

incentives unless firms are inspected. But this could be a fair choice for developing countries as

it requires much less implementing costs.

Second, the evaluation criteria are crucial. While the original one-stage PDP achieves greater

reductions in emissions and pollution intensity, it also leads to higher output losses. For devel-

oping countries prioritizing economic growth, the two-stage PDP may be more suitable, as it

places less strain on output. Conversely, if equal emphasis is placed on reducing emissions and

maintaining output, the one-stage PDP might be more effective, offering stronger emissions con-

trol with only a modest output decline. Overall, the adaptation of institutions from developed

countries should align with broader development goals.

Finally, our analysis also highlights the importance of firms’ productivity distribution in eval-

uating different environmental penalty systems. Developing countries, often characterized by a

large number of small firms at the lower end of the productivity scale, may not experience the

same effects as developed countries. Therefore, the economic structure should be a crucial con-

sideration when adapting institutional frameworks.
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Tables and Figures

Table 1: Summary of zero values in key outcome variables

Variable Zero values Total observations Proportion (%)

COD 957 35,653 2.68
SO2 1,211 30,057 4.03
Sales 4 41,913 0.01
abilityw 704 28,860 2.44
abilityg 384 16,707 2.30

Notes: COD and SO2 represent the chemical oxygen demand and sulfur dioxide emissions, re-
spectively, measured in kilograms. “Sales” refers to the firm’s annual sales revenue (in RMB
10,000); abilityw denotes the firm’s wastewater treatment capacity (tons/day), and abilityg repre-
sents the gas treatment capacity (m3/hour).
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Table 2: Summary statistics

N mean sd min max

log COD 35000 7.940 3.158 -2.303 16.470
log SO2 29000 7.968 3.765 -2.645 18.440
intensityCOD 36000 0.620 2.686 0 33.690
intensitySO2 30000 0.891 3.418 0 44.770
f acilityw 32000 1.306 4.305 0 720.000
f acilityg 17000 2.728 6.858 0 165.000
log abilityw 28000 5.757 1.981 -3.912 14.930
log abilityg 16000 7.236 4.215 0 19.480
log sales 42000 11.430 1.556 0 19.320
Punish 42000 0.148 0.355 0 1
Large 42000 0.755 0.430 0 1

Notes: This table presents the variables used in the empirical analysis. The data is sourced from
the Annual Survey of Industrial Firms, the Annual Environmental Survey of Polluting Firms,
and the Institute of Public and Environmental Affairs (IPEA). The definitions of these variables
are given here. log COD and log SO2: The natural logarithms of chemical oxygen demand and
sulfur dioxide emissions, respectively, both measured in kilograms (kg). These are key environ-
mental pollution indicators derived from firms’ reported pollutant emissions. intensityCOD and
intensitySO2 : The pollution intensity of COD and SO2, calculated by dividing the emissions of
each pollutant by the firm’s sales. f acilitiesw and f acilitiesg : The stock of wastewater (w)
and gas (g) treatment facilities held by firms, representing accumulated technological upgrades.
abilityw: The wastewater treatment capacity of firms, measured in tons per day (tons/day) be-
fore taking the logarithm. abilityg : The gas treatment capacity of firms, measured in cubic
meters per hour (m3/hour) before taking the logarithm. log sales: The natural logarithm of firm
sales, with sales measured in RMB 10,000 before taking the logarithm. Punish: A binary variable
that equals one if a firm has been penalized by environmental agencies in the current year or
any prior year since 2004; otherwise, it equals zero. Large: A binary variable that equals one if
a firm is categorized as large when above the median level of sales in the baseline year and zero
otherwise.

38



Table 3: The average effects of PDP on firm emissions, emission intensities, sales, and adoption of abatement facilities

(1) (2) (3) (4) (5) (6) (7) (8) (9)
log COD log SO2 intensityCOD intensitySO2 log sales f acilitiesw f acilitiesg log abilityw log abilityg

PDP 0.139 0.282 0.152 -0.471 -0.130 -0.004 0.002 0.024 -0.329
(0.94) (1.49) (0.95) (-1.41) (-1.64) (-0.10) (0.01) (0.23) (-1.53)

Punish 0.018 -0.122 -0.249 -0.274 0.123∗∗∗ 0.226∗∗∗ 0.966 0.211∗∗ 0.322
(0.16) (-1.22) (-0.91) (-1.22) (3.75) (3.36) (1.72) (2.37) (0.93)

PDP × Punish -0.988∗∗∗ -0.351∗∗∗ -0.755∗ -1.106∗∗∗ -0.136 0.360∗∗∗ 2.525∗∗ 0.589∗∗∗ 0.703∗∗

(-3.58) (-3.13) (-1.81) (-3.91) (-0.94) (3.25) (2.33) (2.93) (2.46)

Firm-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.765 0.859 0.609 0.677 0.919 0.693 0.867 0.849 0.804
Obs. 19004 17621 19113 17676 21682 18439 6097 15770 5862

Notes: The significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are shown in parentheses and are clustered
by city to account for within-group correlation. The sample includes firms from Chongqing, Shenzhen, and their neighboring cities, covering 2004 to 2013.
PDPct is a dummy variable equal to 1 if the two-stage PDP is in effect in city c from that year t onward, and 0 otherwise. Specifically, PDPct = 1 for Chongqing
from 2007 onward and for Shenzhen from 2010 onward. Punishit is a dummy variable that equals one if firm i has been penalized by the local environmental
agency in the current year or any prior year since 2004; otherwise, it equals 0. The interaction term PDPct × Punishit captures whether penalized firms are
subject to the two-stage PDP in year t. Control variables include interactions between year dummies and each firm’s sales in 2004 to account for initial
differences in firm size.
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Table 4: The placebo test of firms’ emission to the per-day penalty fine

(1) (2) (3) (4) (5) (6) (7) (8) (9)
log COD log SO2 intensityCOD intensitySO2 log sales f acilitiesw f acilitiesg log abilityw log abilityg

PDPp 0.312 0.188 -0.354∗∗∗ -0.155 0.517∗∗∗ 0.059 0.297 0.169 0.899∗∗∗

(1.17) (1.16) (-4.79) (-0.83) (7.04) (0.73) (1.00) (1.67) (5.17)

Punish -0.081 -0.458∗∗ -0.091 -0.928∗∗∗ 0.241∗∗∗ -0.009 1.902∗∗∗ 0.506∗∗∗ 0.778∗∗

(-1.37) (-2.69) (-1.64) (-3.57) (3.04) (-0.11) (3.05) (3.73) (2.70)

PDPp × Punish 0.136 0.265 -0.143 0.354 0.058 0.287 0.868 0.131 0.406
(0.62) (0.88) (-1.35) (0.88) (0.67) (1.52) (1.04) (0.80) (1.08)

Firm-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.790 0.840 0.677 0.754 0.884 0.442 0.847 0.868 0.764
Obs. 29433 28102 31887 31019 36448 30670 22641 25821 18167

Notes: The significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are shown in parentheses and are clustered
by city to account for within-group correlation. The placebo sample includes firms in cities surrounding Chongqing and Shenzhen, as well as in cities directly
bordering these regions, excluding Chongqing and Shenzhen themselves. PDPp equals 1 starting from 2007 for cities near Chongqing and from 2010 for cities
near Shenzhen, and 0 otherwise. All regressions include year- and firm-fixed effects, and additionally control for the interaction between year dummies and
each firm’s sales in 2004 to account for initial firm size differences.
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Table 5: Anticipation effects using firms in Ningxia Hui Autonomous Region

(1) (2) (3) (4) (5) (6) (7)
log COD log SO2 intensityCOD intensitySO2 log sales f acilitiesw log abilityw

PDPp -0.770∗ 0.405 -0.007 2.990∗ -0.162 0.077 -0.119
(-1.80) (0.97) (-0.01) (1.84) (-1.44) (0.15) (-0.31)

Punish 0.441 0.142 1.325 1.281 -0.041 0.246 0.085
(1.03) (0.67) (0.63) (0.83) (-0.37) (0.79) (0.37)

PDPp × Punish 0.268 -0.085 -1.635 -1.027 -0.023 -0.441 0.069
(0.77) (-0.50) (-1.09) (-0.94) (-0.16) (-1.08) (0.15)

Firm-fixed effects Yes Yes Yes Yes Yes Yes Yes
Year-fixed effects Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes

R2 0.755 0.765 0.771 0.674 0.908 0.682 0.811
Obs. 1252 2681 1795 2765 2920 1664 1186

Notes: The significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are shown in parentheses and are clustered
by city to account for within-group correlation. The sample consists of firms located in Ningxia and its neighboring cities from 2004 to 2013. To assess the
effect of anticipation, we assume Ningxia implemented a hypothetical per-day penalty policy starting in 2010. PDPp equals 1 if the firm-year observation
is located in Ningxia and occurs from 2010 onward, and 0 otherwise. All regressions include year- and firm-fixed effects, and additionally control for the
interaction between year dummies and each firm sales in 2004 to account for initial firm size differences.
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Table 6: The effects of PDP on large firms (without affiliates)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
log COD log SO2 intensityCOD intensitySO2 log sales f acilitiesw f acilitiesg log abilityw log abilityg

PDP 0.115 0.463 0.104 -0.573 -0.096 -0.028 -0.127 0.024 -0.123
(0.84) (1.61) (0.65) (-1.65) (-0.89) (-0.41) (-0.18) (0.18) (-0.39)

Punish 0.081 -0.337∗∗ -0.173 -0.434 0.008 0.375∗∗∗ 2.270∗ 0.318∗∗ 0.277
(0.62) (-2.64) (-0.48) (-1.67) (0.26) (3.49) (2.00) (2.70) (0.61)

PDP × Punish -1.108∗∗∗ -0.244∗∗ -0.834∗ -1.548∗∗∗ 0.216∗∗∗ 0.607∗∗∗ 3.724∗∗∗ 0.969∗∗∗ 0.982∗∗

(-3.52) (-2.21) (-1.90) (-4.01) (3.21) (6.75) (3.40) (6.48) (2.49)

Firm-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.762 0.850 0.503 0.725 0.877 0.700 0.883 0.846 0.809
Obs. 9445 8236 9485 8266 10313 9224 2326 8299 2243

Notes: Significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are shown in parentheses and are clustered
by city to account for within-group correlation. The regression sample consists of all firms located in Chongqing, Shenzhen, and the surrounding cities,
categorized as large firms. All regressions include year- and firm-fixed effects, and additionally control for the interaction between year dummies and each
firm sales in 2004 to account for initial firm size differences.
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Table 7: The Effects of PDP on small firms (without affiliates)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
log COD log SO2 intensityCOD intensitySO2 log sales f acilitiesw f acilitiesg log abilityw log abilityg

PDP 0.226 0.134 0.217 -0.624 -0.188∗ 0.053 0.032 0.076 -0.493∗∗

(0.74) (1.19) (0.90) (-1.68) (-1.81) (1.13) (0.16) (0.62) (-2.23)

Punish -0.041 0.135 -0.389 -0.311∗ 0.276∗∗∗ -0.017 0.493 0.058 0.282
(-0.24) (1.34) (-1.62) (-1.76) (4.38) (-0.25) (1.37) (0.97) (0.84)

PDP × Punish -0.570∗∗ -0.559 -0.387 -0.414 -0.551∗∗∗ -0.022 0.418 0.100 0.614
(-2.33) (-1.70) (-0.96) (-1.36) (-4.69) (-0.28) (0.72) (1.14) (1.38)

Firm-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.763 0.877 0.668 0.645 0.779 0.561 0.744 0.841 0.793
Obs. 7773 7725 7829 7738 9265 7392 3332 5834 3198

Notes: The significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are shown in parentheses and are clustered
by city to account for within-group correlation. The regression sample consists of all firms located in Chongqing, Shenzhen, and the surrounding cities,
categorized as small firms. All regressions include year- and firm-fixed effects, and additionally control for the interaction between year dummies and each
firm sales in 2004 to account for initial firm size differences.
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Table 8: The effects of the pilot on the plants of multi-plant firms located within the pilot regions

(1) (2) (3) (4) (5) (6) (7) (8) (9)
log COD log SO2 intensityCOD intensitySO2 log sales f acilitiesw f acilitiesg log abilityw log abilityg

PDP -0.234 0.252 0.277 1.380∗ -0.056 -0.035 0.501 -0.063 0.174
(-0.57) (0.77) (1.37) (2.05) (-0.55) (-0.35) (0.56) (-0.37) (0.34)

Punish -0.057 0.366 -0.325 0.564 0.400∗∗∗ 0.161 -0.795 0.141 1.327
(-0.12) (1.14) (-0.68) (0.91) (4.59) (0.78) (-0.52) (0.81) (1.36)

PDP × Punish -1.442∗ -0.701∗ -1.629 -1.387 -0.929∗∗∗ -0.081 0.724 -0.703 -1.849
(-1.75) (-2.06) (-1.29) (-1.62) (-5.23) (-0.22) (0.51) (-1.34) (-1.72)

Firm-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.708 0.824 0.470 0.633 0.930 0.769 0.871 0.839 0.842
Obs. 1786 1660 1799 1672 2104 1823 439 1637 421

Notes: The significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are shown in parentheses and are clustered
by city to account for within-group correlation. The regression sample consists of all firms located in Chongqing, Shenzhen, and the surrounding cities and
have at least one affiliate outside the above regions. All regressions include year- and firm-fixed effects, with additional controls for the interaction between
year dummies and each firm’s sales in 2004 to account for differences in firm size at the outset.
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Table 9: The effects of the pilot on the plants of multi-plant firms located outside the pilot regions

(1) (2) (3) (4) (5) (6) (7) (8) (9)
log COD log SO2 intensityCOD intensitySO2 log sales f acilitiesw f acilitiesg log abilityw log abilityg

PDPA 0.009 -0.465∗∗∗ 1.738∗∗∗ 0.457∗∗∗ -0.690∗∗∗ -0.097 0.652 -0.008 0.094
(0.10) (-3.18) (4.09) (3.31) (-5.55) (-0.83) (0.94) (-0.13) (0.82)

PunishA -0.706∗∗∗ -0.114 0.142 0.180 -0.178 -0.270 -1.951 -0.031 0.110
(-4.48) (-0.80) (0.15) (0.29) (-1.40) (-0.97) (-1.55) (-0.23) (0.25)

PDPA × PunishA 0.739∗∗∗ 0.389∗ -0.798 0.045 0.330∗ 0.223 0.609 -0.047 -0.232
(4.14) (1.91) (-0.71) (0.08) (1.72) (0.67) (0.47) (-0.32) (-0.48)

Firm-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.788 0.674 0.582 0.658 0.801 0.885 0.947 0.858 0.752
Obs. 6325 6372 6690 6750 6970 6632 5151 6104 4660

Notes: The significance levels are denoted as follows: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are shown in parentheses and are clustered
by city to account for within-group correlation. The regression sample includes firms with affiliates located in Chongqing and Shenzhen. PDPA is a binary
variable equal to one if the city where the affiliate is located has implemented the per-day penalty in that year, and PunishA is a binary variable equal to one
if the affiliate of the firm (located in Shenzhen and Chongqing) has been penalized in that year or a prior year (since 2004). All regressions include year- and
firm-fixed effects, and additionally control for the interaction between year dummies and each firm’s sales in 2004 to account for initial firm size differences.
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Table 10: Structural model parameters.

Parameter Value Targets/Sources

1. Fixed Values
Elasticity of substitution, σ 4.00 Melitz and Redding (2015)
Returns to scale, α 0.90 Chen et al. (2021)
Emission elasticity, αe 0.017 Hang et al. (2023)
Constant term in µa, β0 -0.1866 Average adoption rate
Dirty-to-clean profit ratio, ζ 0.9692 Average share of abatement investment in total output
Abatement cost function parameter, b 2.8 Annicchiarico and Di Dio (2015)

2. Method of Moments Estimation
Revenue constant, Cc 10.8688 Average log(sales)
Inspection rate, λ 0.0475 Share of firms being fined in the sample
Standard deviation of log(ψ), σψ 0.723 Standard deviation of log(sales)
1st-order coefficient in µa, β1 1.1789 Percentile ratio differences
2nd-order coefficient in µa, β2 0.7041 Same as above
3rd-order coefficient in µa, β3 -0.6657 Same as above

3. Policy Parameters
One-shot fine, κ 0.3467% Average fine as a percentage of sales in the sample
Number of violation days, d 10/20/30 -

Table 11: Data targets and simulation results.

Moment Data Model

mean(F ) 0.0250074 0.02529
mean(log(sales)) 10.8199 10.8576
F = 1 std(log(sales)) 1.67967 1.56493
F = 1 log(sales) 90-10 4.38365 4.04939
F = 1 log(sales) 90-50 2.39449 1.83001
F = 0 std(log(sales)) 1.50141 1.47371
F = 0 log(sales) 90-10 3.79873 3.78071
F = 0 log(sales) 90-50 2.13573 1.8873

Notes: This table presents the moments targeted in calibration. F is a dummy variable set to one
if a firm is penalized, so mean(F ) represents the proportion of penalized firms. Other moments
include the mean of log(sales) for all firms, the standard deviation of log(sales) as well as the
90–10 and 90–50 percentile differences in log(sales), calculated separately for fined and non-
fined firms. Data moments are based on our 2004–2006 sample of firms in Chongqing, Shenzhen,
and nearby regions, prior to the 2007 pilot in Chongqing.
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Table 12: Compliance rates under alternative policies.

λ = 0.0475 λ = 0.1

Policy 10κ0 20κ0 30κ0 10κ0 20κ0 30κ0

One-shot policy 0.4737 - - 0.4767 - -
One-stage PDP 0.4976 0.52 0.5402 0.5224 0.562 0.5929
Two-stage PDP (include leakage) 0.4846 0.4876 0.4893 0.4991 0.5056 0.509
Two-stage PDP (exclude leakage) 0.4854 0.4885 0.4904 0.5008 0.5077 0.5114
Post-check adoption 0.7114 0.7808 0.816 0.7114 0.7808 0.816

Table 13: Percentage change in output, emissions, and intensities relative to the one-shot penalty.

(a) Percentage change in output

λ = 0.0475 λ = 0.1

Policy 10κ0 20κ0 30κ0 10κ0 20κ0 30κ0

One-stage PDP -0.03% -0.07% -0.1% -0.07% -0.13% -0.19%
Two-stage PDP (include leakage) -0.02% -0.03% -0.04% -0.04% -0.05% -0.07%
Two-stage PDP (exclude leakage) -0.02% -0.03% -0.04% -0.04% -0.06% -0.07%

(b) Percentage change in emissions

λ = 0.0475 λ = 0.1

Policy 10κ0 20κ0 30κ0 10κ0 20κ0 30κ0

One-stage PDP -2.59% -5.11% -7.3% -5.07% -9.35% -12.58%
Two-stage PDP (include leakage) -1.2% -1.52% -1.67% -2.31% -2.96% -3.24%
Two-stage PDP (exclude leakage) -1.28% -1.61% -1.77% -2.47% -3.15% -3.47%

(c) Percentage change in pollution intensity

λ = 0.0475 λ = 0.1

Policy 10κ0 20κ0 30κ0 10κ0 20κ0 30κ0

One-stage PDP -2.56% -5.05% -7.2% -5.01% -9.23% -12.42%
Two-stage PDP (include leakage) -1.18% -1.49% -1.63% -2.27% -2.9% -3.18%
Two-stage PDP (exclude leakage) -1.26% -1.58% -1.73% -2.43% -3.1% -3.39%
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(a) log COD (b) log SO2

(c) intensityCOD (d) intensitySO2

Figure 1: Parallel trends test for emissions and intensity.

Notes: This figure displays the estimated coefficients for Punish and year dummies across the following four outcome
variables: log COD, log SO2, intensityCOD , and intensitySO2 . The solid line represents the point estimates, while the
dashed line shows the 95% confidence intervals.
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(a) f acilitiesw (b) abilityw

(c) f acilitiesg (d) abilityg

Figure 2: Parallel trends test for facilities and ability.

Notes: This figure displays the estimated coefficients for Punish and year dummies across the following four outcome
variables: f acilitiesw,abilityw, f acilitiesg, and abilityg. The solid line represents the point estimates, while the dashed line
shows the 95% confidence intervals.

49



(a) The expected adoption threshold µa as a function of log ψ:
P(log ψ).

(b) The compliance rate as a function of log(ψ).

Figure 3: The estimated adoption threshold and compliance rate as functions of log(ψ) under the
one-shot penalty.
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(a) The compliance rate

(b) Output changes

(c) Intensity changes

Figure 4: The impact on the inspected firms under two-stage per-day penalty (PDP).

Note: We consider the subset of firms that do not adopt clean technologies under the one-shot penalty, resulting in a
zero compliance rate. Panel (a) illustrates the compliance rate when these firms face follow-up inspections under the
two-stage PDP, with three levels of expected violation days. Panels (b) and (c) depict the percentage changes in output
and intensity experienced by these firms when they undergo follow-up inspections under the two-stage PDP compared
to a one-shot penalty.
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(a) The compliance rate

(b) Output changes

(c) Intensity changes

Figure 5: The compliance rate, output, emission, and intensity under alternative policies.

Note: Panel (a) compares the compliance rate of the one-shot penalty (dotted curve), one-stage per-day penalty (PDP)
(solid curve), and two-stage PDP (red dashed curve). Panels (b) and (c) display the percentage changes in output and
intensity of firms across productivity under the one-stage PDP (black solid curve) and two-stage PDP (red dashed curve)
relative to under the one-shot penalty.
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A Proofs and derivations

A.1 Proof of Lemma 1

Take 1−λAκA
1−λBκB

as a variable and solve for γ from (6); then, taking derivative w.r.t. γ at τA
τB

= γ = 1, we have
d
(

1−λAκA
1−λBκB

)
dγ | τA

τB
=γ=1 = (σ−1)(1−α)

ασ > 0. Similarly, we have
d
(

τA
τB

)
dγ | 1−λAκA

1−λBκB
=γ=1

= −(1 − α)/α < 0. ■

A.2 Proof of Proposition 4

A dual-plant firm facing a type 0 inspection has a value V0(ψ) that satisfies

V0(ψ) = max
a0(ψ)∈{0,1}

{
a0(ψ)

(
Πc(ψ)

δ
− f

)
+ (1 − a0(ψ))

(
Πd(ψ, λκ0) + (1 − δ)[λ0V1(ψ) + (1 − λ0)V0(ψ)]

)}
.

When factory A faces a type 1 inspection, the firm’s value denoted by V1(ψ) satisfies

V1(ψ) = max
a1(ψ)∈{0,1}

{
a1(ψ)

(
Πc(ψ)

δ
− ( f + f1)

)
+ (1 − a1(ψ))

((
Πd(ψ, κ1)

)
+ (1 − δ)V1(ψ)

)}
.

We first derive ψ̃a0 and then derive a condition under which a dual-plant firm with ψ = ψ̃a0 does not adopt

after being punished. Since a dual-plant firm with ψ = ψ̃a0 finds it optimal to adopt abatement technology

ex ante a0(ψ̃a0) = 1 and not adopt ex post a1(ψ̃a0) = 0 in the proposed equilibrium, its values can be

simplified to

Ṽ0(ψ̃a0) =
Πc(ψ̃a0)

δ
− f ,

Ṽ1(ψ̃a0) =
Πd(ψ̃a0, κ1)

δ
.

The threshold productivity ψ̃a0 is determined by the following indifference condition:

Πc(ψ̃a0)−
[

δ

δ + λ(1 − δ)
Πd(ψ̃a0, λκ0) +

λ(1 − δ)

δ + λ(1 − δ)
Πd(ψ̃a0, κ1)

]
= δ f . (12)

Moreover, the lower bound f1 should satisfy Πc(ψ̃a0)− Πd(ψ̃a0, κ1) = δ( f + f1). Inserting into (12) yields

f1 =
1

δ + λ(1 − δ)
(Πd(ψ̃a0, λκ0)− Πd(ψ̃a0, κ1)). (13)

Next, the upper bound of f1, i.e., f̄1, is determined by δ( f + f̄1) = πa(ψa0)−πn(ψa0, κ1). After some tedious

manipulation, we have f̄1 ≡ δ f ((1−λκ0)βκ −(1−κ1)βκ )
(η−βτ −(1−λκ0)

βκ )δ+λ(1−δ)(η−βτ −(1−κ1)
βκ )

. Finally, since for α → 1, f1 → 0, and f̄1

is always positive, we have f̄1 > f1 for at least some parameter space, e.g., when α is sufficiently large. ■

A.3 Derivations of Predictions 1 and 2

CONSIDER A SINGLE-PLANT FIRM. If the firm produces using dirty technologies, it solves the following

problem under a type 0 inspection:

max
q≥0

{
(1 − λκ0)q

σ−1
σ − Υψ− αl

α τ
αe
α q

1
α

}
,
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with λκ0 being replaced by κ1 if the firm is facing a type 1 inspection. Let the optimal production under a

type 0 inspection be qn0, which satisfies

q
(1−α)σ+α

ασ
n0 =

σ − 1
σ

α(1 − λκ0)

Υψ− αl
α τ

αe
α

.

Similarly, when the firm faces a type 1 inspection, its optimal output is

q
(1−α)σ+α

ασ

n1 =
σ − 1

σ

α(1 − κ1)

Υψ− αl
α τ

αe
α

.

The emissions as a function of q are given by

e(q) = q
1
α

(
τψ

αl
αe

)− αl
α

.

If the firm has adopted the abatement technology, it solves the problem of

max
q≥0

{
q

σ−1
σ − Υψ− αl

α (ητ)
αe
α q

1
α

}
.

The optimal production is given by

q
(1−α)σ+α

ασ
a =

σ − 1
σ

α

Υψ− αl
α (ητ)

αe
α

.

The emissions as a function of q are given by

ea(q) =
1 − ξ∗(

1 − ξ∗ + 1
b ξ∗
) αl

α

q
1
α

(
τψ

αl
αe

)− αl
α

.

Note that for a given q, abatement directly reduces emissions since 1−ξ∗

(1−ξ∗+ 1
b ξ∗)

αl
α
< 1.

⊙ Case 1: Firms with productivity ψ ∈ [ψa1, ψa0) adopt the abatement technology upon being punished.

There is an increase in total output:

log qa − log qn0 = − σα

σ(1 − α) + α
log(1 − κ0λ)− σαe

α + σ(1 − α)
log η > 0.

The change in emissions is

log ea − log en0 = log

(
1 − ξ∗

(1 − ξ∗ + 1
b ξ∗)

αl
α

)
+

1
α
(log qa − log qn0) ,

where the first term is a direct effect of abatement and the second term is the increased optimal output due

to lower effective emission fees. The net effect can be positive or negative. Inserting qa and qn0, we have

that the reduction in emissions log ea − log en0 < 0 if and only if

(1 − λκ0)
− σ

α+(1−α)σ <
η

αl
α + αe

α
σ

α+(1−α)σ

1 − ξ∗
. (14)

Note that if b is sufficiently small, then ξ∗ is large (e.g., close to one, and η remains much larger than

zero), and condition (14) is satisfied. In other words, if the abatement technology is sufficiently efficient,

the emissions decrease. Finally, if (14) is satisfied, the pollution intensity, given by log ea
qa

− log en0
qn0

must

decrease.

⊙ Case 2: Firms with productivity ψ ∈ [0, ψa1) do not update technologies. Their output, emissions,
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and emission intensity will change upon being punished by

log qn1 − log qn0 =
σα

σ(1 − α) + α
(log(1 − κ1)− log(1 − κ0λ)) < 0,

log en1 − logen0 =
1
α
(log qn1 − log qn0) < 0,

log
en1
qn1

− log
en0
qn0

=
1 − α

α
(log qn1 − log qn0) < 0.

In particular, for a large value of α, the change of pollution intensity tends to be small and approaches 0 as

α → 1.

CONSIDER A DUAL-PLANT FIRM. The firm has productivity ψ < ψ̃a0, and it has two plants where

factory A (B) is subject to the PDP (the one-shot penalty). The profit-maximizing output ratio between the

two plants satisfies (6). Suppose factory A has been fined and is now facing a type 1 inspection. According

to Lemma 1, the ratio γ = qA/qB must be lower. This means ∆qA ≡ q′A − qA < 0, and ∆qB ≡ q′B − qB > 0.

To understand this, consider a proof by contradiction. Suppose qA increases after factory A is fined. In

that case, the firm will choose qB to maximize the part of profits related to the quantity produced at factory

B: (qA + qB)
− 1

σ (1− λκ0)qB − c(qB, τ). Given that qA is higher, the marginal benefit of producing qB is lower

due to the downward-sloping demand, meaning qB must be lower. This contradicts the fact that γ should

be decreasing. Similarly, if qA decreases after factory A is fined, qB must increase. This aligns with the fact

that γ should be lower when factory A faces stricter penalties.

Using e(q), we have that ∆ log eA = 1
α log(q′A/qA) < 0, ∆ log eB = 1

α log(q′B/qB) > 0. Finally, the

changes in pollution intensity satisfy ∆ log e/q = 1−α
α log(q′/q), which approaches 0 as α → 1. ■
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